
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 4364
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.manaraa.com

Thomas Kühne (Ed.)

Models in
Software Engineering

Workshops and Symposia at MoDELS 2006
Genoa, Italy, October 1-6, 2006
Reports and Revised Selected Papers

13

www.manaraa.com

Volume Editor

Thomas Kühne
TU Darmstadt
FG Metamodellierung
Hochschulstr. 10, 64289 Darmstadt, Germany
E-mail: kuehne@informatik.tu-darmstadt.de

Library of Congress Control Number: 2006939519

CR Subject Classification (1998): D.2, D.3, I.6, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69488-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69488-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11969273 06/3142 5 4 3 2 1 0

www.manaraa.com

Preface

Following tradition, MoDELS 2006 hosted a number of workshops and symposia.
They provided collaborative forums for groups to conduct intensive discussions
and complemented the main conference by focusing on important subject areas
and enabling a high degree of interactivity.

MoDELS 2006 featured 11 workshops and three symposia during the first
three days of the conference. In addition to the Doctoral and Educators sym-
posia, which were already successfully held in 2005, a symposium on UML
semantics was held for the first time at MoDELS 2006.

Keeping a time-tested tradition of the MoDELS/UML series, I formed an in-
ternational workshop selection committee composed of the following researchers:

– Jean-Michel Bruel (University of Pau, France)
– Martin Glinz (Universität Zürich, Switzerland)
– Reiko Heckel (University of Leicester, UK)
– Jens Jahnke (University of Victoria, Canada)
– Hans Vangheluwe (McGill University, Canada)
– Jon Whittle (George Mason University, USA)

Out of 18 workshop proposals, we selected 11 workshops and the symposium
on UML semantics. Because of the way the latter was organized we, as well as
the symposium organizers, agreed that it fitted more appropriately under the
heading of a symposium.

Six of the workshops have a history in the MoDELS/UML series and rep-
resented a continuation of ongoing discussions on established topics. The other
five workshops featured new topics, further broadening the scope of MoDELS,
beyond its traditional focus on UML. We believe this blend of established and
innovative workshop themes made the MoDELS 2006 workshops and symposia a
success worth attending. The summaries of all symposia and workshops plus re-
vised versions of the two respective best papers are included in these proceedings.

I am grateful to the members of the Selection Committee who accepted
my invitation and worked diligently to select the workshops with the maxi-
mum research relevance and highest potential of attracting participants. Gianna
Reggio was an invaluable help in resolving organizational issues and my prede-
cessor Jean-Michel Bruel immensely eased my work by generously sharing his
experience.

November 2006 Thomas Kühne
Workshop Chair

MoDELS 2006

www.manaraa.com

VI Preface

Sponsors

DISI, Dipartimento di Informatica e Scienze
dell’Informazione, Università di Genova
(www.disi.unige.it)

ACM Special Interest Group on Software Engineering
(www.sigsoft.org)

IEEE Computer Society
(www.computer.org)

www.manaraa.com

Table of Contents

W1 – Aspect-Oriented Modeling

9th International Workshop on Aspect-Oriented Modeling 1
Jörg Kienzle, Dominik Stein, Walter Cazzola, Jeff Gray,
Omar Aldawud, and Tzilla Elrad

Modeling Features in Aspect-Based Product Lines with Use Case
Slices: An Exploratory Case Study . 6

Roberto E. Lopez-Herrejon and Don Batory

Join Point Patterns: A High-Level Join Point Selection Mechanism 17
Walter Cazzola and Sonia Pini

W2 – Critical Systems Development

Critical Systems Development Using Modeling Languages – CSDUML
2006 Workshop Report . 27

Geri Georg, Siv Hilde Houmb, Robert France, Steffen Zschaler,
Dorina C. Petriu, and Jan Jürjens

Modeling an Electronic Throttle Controller Using the Timed Abstract
State Machine Language and Toolset . 32

Martin Ouimet, Guillaume Berteau, and Kristina Lundqvist

Model Checking of UML 2.0 Interactions . 42
Alexander Knapp and Jochen Wuttke

W3 – Reverse Engineering

3rd International Workshop on Metamodels, Schemas, Grammars and
Ontologies . 52

Jean-Marie Favre, Dragan Gašević, Ralf Lämmel, and
Andreas Winter

A Unified Ontology-Based Process Model for Software Maintenance
and Comprehension . 56

Juergen Rilling, Yonggang Zhang, Wen Jun Meng, René Witte,
Volker Haarslev, and Philippe Charland

Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL 66
Miguel Garcia

www.manaraa.com

VIII Table of Contents

W4 – Quality in Modeling

The 1st Workshop on Quality in Modeling . 76
Ludwik Kuzniarz, Jean Louis Sourouille, and Miroslaw Staron

Consistency of Business Process Models and Object Life Cycles 80
Ksenia Ryndina, Jochen M. Küster, and Harald Gall

A Qualitative Investigation of UML Modeling Conventions 91
Bart Du Bois, Christian F.J. Lange, Serge Demeyer, and
Michel R.V. Chaudron

W5 – Advanced User Interfaces

Model Driven Development of Advanced User Interfaces (MDDAUI) –
MDDAUI’06 Workshop Report . 101

Andreas Pleuß, Jan van den Bergh, Stefan Sauer,
Heinrich Hußmann, and Alexander Bödcher

A Model-Driven Approach to the Engineering of Multiple User
Interfaces . 106

Goetz Botterweck

Model-Driven Dynamic Generation of Context-Adaptive Web User
Interfaces . 116

Steffen Lohmann, J. Wolfgang Kaltz, and Jürgen Ziegler

W6 – Real-Time and Embedded Systems

Modelling and Analysis of Real Time and Embedded Systems – Using
UML . 126

Susanne Graf, Sébastien Gérard, Øystein Haugen, Iulian Ober, and
Bran Selic

Time Exceptions in Sequence Diagrams . 131
Oddleif Halvorsen, Ragnhild Kobro Runde, and Øystein Haugen

Applying Model Intelligence Frameworks for Deployment Problem in
Real-Time and Embedded Systems . 143

Andrey Nechypurenko, Egon Wuchner, Jules White, and
Douglas C. Schmidt

W7 – OCL

OCL for (Meta-)Models in Multiple Application Domains 152
Dan Chiorean, Birgit Demuth, Martin Gogolla, and Jos Warmer

www.manaraa.com

Table of Contents IX

OCL-Based Validation of a Railway Domain Profile 159
Kirsten Berkenkötter

OCL Support in an Industrial Environment . 169
Michael Altenhofen, Thomas Hettel, and Stefan Kusterer

W8 – Integrating MDA and V&V

Report on the 3rd MoDeVa Workshop – Model Design
and Validation . 179

Benôıt Baudry, David Hearnden, Nicolas Rapin, and
Jörn Guy Süß

Towards Model-Driven Unit Testing . 182
Gregor Engels, Baris Güldali, and Marc Lohmann

Validation of Model Transformations – First Experiences Using a
White Box Approach . 193

Jochen M. Küster and Mohamed Abd-El-Razik

W9 – Model Size Metrics

Summary of the 2006 Model Size Metrics Workshop 205
Frank Weil and Andrij Neczwid

Model Size Matters . 211
Christian F.J. Lange

On the Application of Software Metrics to UML Models 217
Jacqueline A. McQuillan and James F. Power

W10 – Models@run.time

Summary of the Workshop Models@run.time at MoDELS 2006 227
Nelly Bencomo, Gordon Blair, and Robert France

Using Runtime Models to Unify and Structure the Handling of
Meta-information in Reflective Middleware . 232

Fábio Moreira Costa, Lucas Luiz Provensi, and
Frederico Forzani Vaz

Applying OMG D&C Specification and ECA Rules for Autonomous
Distributed Component-Based Systems . 242

Jérémy Dubus and Philippe Merle

www.manaraa.com

X Table of Contents

W11 – Multi-Paradigm Modeling

Summary of the Workshop on Multi-Paradigm Modeling: Concepts and
Tools . 252

Holger Giese, Tihamér Levendovszky, and Hans Vangheluwe

Think Global, Act Local: Implementing Model Management with
Domain-Specific Integration Languages . 263

Thomas Reiter, Kerstin Altmanninger, and Werner Retschitzegger

S1 – Doctoral Symposium

MoDELS 2006 Doctoral Symposium . 277
Gabriela Arévalo and Robert Pettit

Model Driven Security Engineering for the Realization of Dynamic
Security Requirements in Collaborative Systems . 278

Muhammad Alam

S2 – Educators Symposium

Educators’ Symposium at MoDELS 2006 . 288
Ludwik Kuzniarz

If You’re Not Modeling, You’re Just Programming: Modeling
Throughout an Undergraduate Software Engineering Program 291

James Vallino

Teaching Software Modeling in a Simulated Project Environment 301
Robert Szmur�lo and Micha�l Śmia�lek

Repository for Model Driven Development (ReMoDD) 311
Robert France, Jim Bieman, and Betty H.C. Cheng

S3 – A Formal Semantics for UML

2nd UML 2 Semantics Symposium: Formal Semantics for UML 318
Manfred Broy, Michelle L. Crane, Juergen Dingel, Alan Hartman,
Bernhard Rumpe, and Bran Selic

A UML Simulator Based on a Generic Model Execution Engine 324
Andrei Kirshin, Dolev Dotan, and Alan Hartman

Queries and Constraints: A Comprehensive Semantic Model
for UML2 . 327

Ingolf H. Krüger and Massimiliano Menarini

www.manaraa.com

Table of Contents XI

Analysis of UML Activities with Dynamic Meta Modeling
Techniques . 329

Christian Soltenborn and Gregor Engels

Author Index . 331

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 1 – 5, 2007.
© Springer-Verlag Berlin Heidelberg 2007

9th International Workshop on
Aspect-Oriented Modeling

Jörg Kienzle1, Dominik Stein2, Walter Cazzola3,
Jeff Gray4, Omar Aldawud5, and Tzilla Elrad6

1 McGill University, Canada
 2 University of Duisburg-Essen, Germany

3 University of Milano, Italy
 4 University of Alabama at Birmingham, USA

5 Lucent Technologies, USA
 6 Illinois Institute of Technology, USA

joerg.kienzle@mcgill.ca, dominik.stein@icb.uni-due.de,
cazzola@dico.unimi.it, gray@cis.uab.edu, oaldawud@lucent.com,

elrad@iit.edu

Abstract. This report summarizes the outcomes of the 9th Workshop on
Aspect-Oriented Modeling (AOM) held in conjunction with the 9th International
Conference on Model Driven Engineering Languages and Systems – MoDELS
2006 – in Genoa, Italy, on the 1st of October 2006. The workshop brought
together approximately 25 researchers and practitioners from two communities:
aspect-oriented software development and software model engineering. It
provided a forum for discussing the state of the art in modeling crosscutting
concerns at different stages of the software development process: requirements
elicitation and analysis, software architecture, detailed design, and mapping to
aspect-oriented programming constructs. This paper gives an overview of the
accepted submissions and summarizes the results of the different discussion
groups. Papers and presentation slides of the workshop are available at
http://www.aspect-modeling.org/.

1 Introduction

This report summarizes the outcomes of the 9th edition of the successful
Aspect-Oriented Modeling Workshop series. The workshop took place at the Bristol
Hotel in Genoa, Italy, on Sunday, October 1st 2006, as part of the 9th International
Conference on Model Driven Engineering Languages and Systems – MoDELS 2006. A
total of 11 position papers were submitted and reviewed by the program committee, 9 of
which were accepted to the workshop. Approximately 25 participants attended the
presentation session and took part in lively discussions. Papers, presentation slides, and
further information can be found at http://www.aspect-modeling.org/.

2 Overview of Accepted Position Papers

Marcelo Sande from the Military Institute of Engineering in Rio de Janeiro, Brazil,
described how he and his colleagues mapped AspectualACME, an architectural

www.manaraa.com

2 J. Kienzle et al.

description language, to UML 2.0 [8]. He presented why the base UML 2.0 modeling
abstractions of component diagrams are not strong enough. One reason to this is that
standard UML only allows to connect provided interfaces of components to required
interfaces of other components. He explained how they made connectors first-order
elements, and how they defined a special aspectual connector that can be used to
connect the provided interface of a (crosscutting) component to both the provided and
the required interfaces of another (base) component.

Natsuko Noda from the Japan Advanced Institute of Sciences and Technology in
Nomi, Japan, presented a symmetric aspect-oriented modeling technique for
aspect-oriented design [6]. In Noda’s presentation, each concern of the system is
modeled with aspects that are composed of class diagrams, object diagrams and state
diagrams. Each aspect is self-contained. The connections between aspects are defined
in aspect relation rules, which define how a transition change in one aspect can affect
other aspects (i.e., by introducing events into other aspects).

Asif Iqbal from the Honeywell Technology Solutions Lab in Bangalore, India,
works in the context of modeling of safety-critical systems. He talked about the issue
of modeling temporal behavior, which usually crosscuts the functional model of a
system [4]. In order to reason about concepts such as Worst Case Execution Time,
time-depending behavior has to be explicitly represented in models. As an example,
Asif mentioned the synchronization of local clocks with a global clock. He showed
how this concern can be modeled with timed state diagrams, and how the crosscutting
can be modeled using the AOSF framework with time extensions. However, state
diagrams that are created using orthogonal composition run on a single clock, which
is a problem that still needs to be addressed.

Thomas Cottenier from Motorola Labs in Chicago, USA, argued that reactive
functionality of a system should be modeled using a reactive modeling formalism
such as state diagrams [2]. He showed a small demonstration of the Motorola Aspect
WEAVR, a tool for aspect-oriented composition of state diagrams. The Motorola
models are executable (or transformable into executable code). Thomas argued that
aspect-oriented modeling is more powerful than aspect-oriented programming: The
join point model of state diagrams is better suited to express crosscutting reactive
concerns than the classic join point model of aspect-oriented programming languages.

Sonia Pini from the University of Genoa, Italy, argued that current pointcut
definitions require global knowledge of the base program by the developer in order to
write meaningful pointcuts [1]. Hence, current join point selection mechanisms are
fragile, because they fail to provide reusability and evolvability. In order to reason
about the semantics of join points, she proposed a technique in which the join points
are expressed at a higher level of abstraction (i.e., at the modeling level with sequence
and activity diagrams). Furthermore, she presented a mechanism to map these high-
level join point selections to program code.

Arnor Solberg from SINTEF/the University of Oslo, Norway, presented an
aspect-oriented modeling technique based on sequence diagrams [7]. In this approach,
aspect sequence diagrams are defined that represent a template of crosscutting
behavior. To instantiate the aspects, the base model is annotated with tags that define
where the aspects should be applied (i.e., instantiated). Simple aspects are inserted
into the base sequence diagram at one specific point, whereas composite aspects are
applied to regions within the base diagram (annotated with a tagged fragment). In

www.manaraa.com

 9th International Workshop on Aspect-Oriented Modeling 3

order to allow fine-grained application of crosscutting behavior within this tagged
fragment, a composite aspect defines several parts: begin/end parts that execute when
the fragment is entered/exited, before/after parts that execute before or after every
message invocation, and a body part that can alter the actual message sending.

Andrea Sindico from ELT Elettronica in Rome, Italy, presented an aspect-oriented
modeling approach in which concerns are specified in an aspect diagram [3], which
defines static crosscutting in the form of an inter-type declaration diagram, and
dynamic crosscutting in the form of advice diagrams. Inter-type declaration diagrams
are composed of two class diagrams. Advice diagrams are composed of pointcut
diagrams and behavioral diagrams. In both cases, one diagram explains the context of
the base program that is of interest, while the other shows what has to be added to the
base context. Pointcut diagrams (comprised in advice diagrams), for example, define
the set of join points to which an aspect is to be applied. In his work, Andrea suggests
to specify them in the form of a UML activity diagram.

Thomas Cottenier from the Motorola Labs in Chicago, USA, also presented work
on aspect interference at the modeling level [9]. He showed a demo of the Telelogic
TAU tool, in which they implemented different dependencies in their aspect
deployment diagrams: A «follows» B, which specifies that aspect A's behavior has
lower precedence than B; A «hidden_by» B, which specifies that the behavior of
aspect A is not activated when A and B apply to the same join point; and A
«depends_on» B, which specifies that aspect A's behavior can only be applied where
aspect B's behavior is also applied.

Roberto Lopez-Herrejon from Oxford University, UK, related Feature-Oriented
Programming (FOP) to the approach of Aspect-Oriented Software Development with
Use Cases (AOSD w/UC) [5]. He demonstrated how features can crosscut other
features and how aspects can help to resolve this crosscutting. Roberto referred to the
existing approach of AOSD w/UC and pointed out its limitations with respect to a
well-defined composition mechanism. After that, he introduced the algebraic
approach of FOP, which contains a formal composition model, but lacks an
"intuitive" notation. Roberto proposed to combine FOP with AOSD w/UC to achieve
mutual benefit.

3 Overview of Discussion Topics

Due to space limitations, this section offers a summary of the most interesting and
significant issues that were addressed during the discussion sessions. These issues
also emerged during the questions and comments in the presentation sessions.

Is AOM about visual representation? During the workshop, the participants
expressed several opinions about the essence of AOM. The general idea of modeling
is to make something simpler (i.e., more comprehensible). Very often, this goal is
achieved by providing a visual notation. However, most of the participants agreed that
a visual notation is not essential. Once the semantics of an abstraction are well-
defined, finding a suitable graphical representation for it is only syntactic sugar. The
discussion did not go into further details, unfortunately, about what precisely AOM
should make simpler or more comprehensible other than "visual communication."

www.manaraa.com

4 J. Kienzle et al.

Is there a need to look at woven models? There has been a disagreement on
whether developers need to have a look at woven models. Although some participants
argued that this is necessary for comprehending the execution of an aspect-oriented
program (or model) and for debugging, others claimed that, once the semantics of a
given weaving mechanism is clear, developers do not care about (and do not need to
look up) how these semantics are actually accomplished.

Does AOM meet its goals? One of the participants questioned if AOM actually
meets its goals, such as an improved readability, comprehensibility, extensibility, and
reusability of software (artifacts). The participant reported on a case study that was
conducted in which aspect-oriented modeling techniques were used throughout the
entire software development lifecycle. That is, each concern was separated all the way
down from requirements elucidation to the pre-coding phase. In the end, the
participant obtained a nicely separated set of concern specifications. However, this
results in a full load of very complex composition specifications determining how
those nicely separated concerns are supposed to work together. These composition
specifications were not readable, comprehensible, extendible, or reusable.

What is the role of model composition specifications (join point selections,
composition rules, etc.) in the software development process? Various participants
were concerned about the relevance of model composition specifications (such as join
point selections, pointcuts, composition rules, composition directives, or other kinds
of dependency relationships between concern models) in the software development
lifecycle. It has been stated that the gap between join points1 in requirement
specifications and join points in the corresponding code is huge. Consequently, the
mapping of join point selections (composition rules) between different levels of
abstraction is often problematic. One solution to this might be to introduce notions of
join points at various levels of abstraction, such as architectural join points for
architectural system descriptions, and map the join point notion of one abstraction
layer to the join point notion of the layer beneath.

A statement from an industry participant suggested that AOM may help to keep
concepts separated and consistent throughout the development process. However,
AOM should also provide a means to indicate explicitly how those separated concepts
interact with each other in order to document design decisions and tradeoffs.
Furthermore, AOM should provide support for documenting the application of a
particular policy in the general case and at the same time outlining under which
circumstances a more specialized policy is used (e.g., in general, use password
authentication, but in these and those special cases, use biometric authentication).

What is the target application context of AOM? Another question concerned the
target application context of AOM and how AOM should support it. Industry
mentioned that software projects rarely attack problems from scratch. Usually,
existing software needs to be extended. Therefore, AOM should provide a means to
support extensibility. Another point was that introducing aspects into industry should
start with simple cases. Such simple aspects should be implemented by a small group
of developers, which facilitates support for the larger group of "base program
developers." Once the simple aspects are adopted, more elaborate aspects could be
introduced. One problem that has to be solved concerns the fact that even simple

1 or, more generally speaking, some kind of concern interaction points.

www.manaraa.com

 9th International Workshop on Aspect-Oriented Modeling 5

aspects can add an enormous amount of new possible states to a base program. Perhaps
AOM can help in estimating the effects of an aspect onto a given base system. Another
scenario mentioned concerns how AOM could be used to document design decisions and
tradeoffs (see previous question).

4 Concluding Remarks

The 9th International Workshop on Aspect-Oriented Modeling in Genoa provided
evidence that the AOM community has reached a state of maturity. Most participants
were well aware of the fundamental ideas and key concepts of AOSD. Consequently,
the focus of discussions shifted from "what are the right abstractions to use in AOM
in general?" towards "how to use these abstractions and AOM in order to reach
certain goals?" The participants from academia critically evaluated the existing
modeling approaches with respect to certain claims and specific problems.
Participants from industry expressed clear expectations of what they anticipate from
AOM. These problems and expectations outline cardinal and substantial topics for
future research on AOM.

Acknowledgements

We would like to thank the program committee members who have helped to assure the
quality of this workshop: Mehmet Aksit, Aswin van den Berg, Thomas Cottenier, Robert
France, Sudipto Ghosh, Stefan Hanenberg, Andrew Jackson, Jean-Marc Jézéquel, Kim
Mens, Alfonso Pierantonio, Raghu Reddy, and Markus Völter. We also thank all
submitters and workshop participants who helped to make this workshop a success.

References

[1] Cazzola, W., Pini, S., Join Point Patterns: A High-Level Join Point Selection Mechanism
[2] Cottenier, T., van den Berg, A., Elrad, T., Model Weaving: Bridging the Divide between

Elaborationists and Translationists
[3] Grassi, V., Sindico, A., UML Modeling of Static and Dynamic Aspects
[4] Iqbal, A., Elrad, T., Modeling Timing Constraints of Real-Time Systems as Crosscutting

Concerns
[5] Lopez-Herrejon, R., Batory, D., Modeling Features in Aspect-Based Product Lines with

Use Case Slices: An Exploratory Case Study
[6] Noda, N., Kishi, T., An Aspect-Oriented Modeling Mechanism Based on State Diagrams
[7] Reddy, R., Solberg, A., France, R., Ghosh, S., Composing Sequence Models using Tags
[8] Sande, M., Choren, R., Chavez, C., Mapping AspectualACME into UML 2.0
[9] Zhang, J., Cottenier, T., van den Berg, A., Gray, J., Aspect Interference and Composition

in the Motorola Aspect-Oriented Modeling Weaver

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 6 – 16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Features in Aspect-Based Product
Lines with Use Case Slices:
An Exploratory Case Study

Roberto E. Lopez-Herrejon1 and Don Batory2

1 Computing Laboratory, University of Oxford, England
2 Department of Computer Sciences, University of Texas at Austin, USA

rlopez@comlab.ox.ac.uk, batory@cs.utexas.edu

Abstract. A significant number of techniques that exploit aspects in software
design have been proposed in recent years. One technique is use case slices by
Jacobson and Ng, that builds upon the success of use cases as a common
modeling practice. A use case slice modularizes the implementation of a use
case and typically consists of a set of aspects, classes, and interfaces. Work on
Feature Oriented Programming (FOP) has shown how features, increments in
program functionality, can be modularized and algebraically modeled for the
synthesis of product lines. When AspectJ is used in FOP, the structure of
feature modules resembles that of use case slices. In this paper, we explore the
relations between use case slices modeling and FOP program synthesis and
describe their potential synergy for modeling and synthesizing aspect-based
product lines.

1 Introduction

A significant number of techniques that exploit aspects in the realm of design have
been proposed in recent years [4]. One technique, proposed by Jacobson and Ng [15],
is use case slices, which are modular implementations of use cases. Typically, the
implementation of a use case slice consists of a set of aspects, classes, and interfaces.
A similar structure appears when aspects are used to implement features [16][19],
which are increments in program functionality, with Feature Oriented Programming
(FOP) [10][11], a technology that studies feature modularity in program synthesis for
product lines.

In this paper, we present a simple product line example and its implementation in
AspectJ. This example helps us illustrate how use case slices can model features in
aspect-based product lines and how features can be algebraically modeled for
program synthesis. We analyze the relations between use case slices modeling and
FOP program synthesis and describe how their potential synergy can serve as a
foundation of a methodology for modeling and synthesizing aspect-based product
lines.

2 Product Line Example

To illustrate the similarities between use case slices and features we use a simple
product line based on the Extensibility Problem [17]. This problem has been widely

www.manaraa.com

 Modeling Features in Aspect-Based Product Lines 7

studied within the context of programming language design, where the focus is
achieving data type and operation extensibility in a type-safe manner. Our focus is on
designing and synthesizing a family of programs that we call the Expressions Product
Line (EPL) [17]. Next we describe in detail this product line and its implementation
using AspectJ.

2.1 Example Description

EPL supports a mix of new operations and datatypes to represent expressions of the
following language:

Exp :: = Lit | Add | Neg
Lit :: = <non-negative integers>
Add :: = Exp "+" Exp
Neg :: = "-" Exp

Two operations can be performed on expressions of this grammar:

1) Print displays the string value of an expression. The expression 2+3 is repre-
sented as a three-node tree with an Add node as the root and two Lit nodes as
leaves. Operation Print, applied to this tree, displays the string “2+3”.
2) Eval evaluates expressions and returns their numeric value. Applying the oper-
ation Eval to the tree of expression 2+3 yields 5 as the result.

An extra class Test creates instances of the datatype classes and invokes their
operations.

A natural representation for EPL is a two-dimensional matrix [17]. Rows represent
datatypes and columns specify operations. Each matrix entry is a feature that
implements the operation, described by the column, on the data type, specified by the
row. As a naming convention throughout the paper, we identify matrix entries by
using the first letters of the row and the column, e.g., the entry at the intersection of
row Add and column Print is named ap and implements operation Print on data
type Add. This matrix is shown in Figure 1 where feature names are encircled.

A program member of this product line is composed from the set of features that
are at the intersection of the set of operations (columns) and datatypes (rows) selected
for the program. EPL is formed by all the possible combinations of selections of rows
and columns. For instance, the program that implements Print and Eval operations
on datatypes Lit and Neg is composed with features lp, le, np, and ne.

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

Print Eval

Lit

Add

Neg

lele

aeae

nene

lplp

apap

npnp

Fig. 1. Matrix representation of EPL

www.manaraa.com

 R.E. Lopez-Herrejon and D. Batory 8

2.2 AspectJ Implementation

Let us now analyze how the features of EPL are implemented in AspectJ [17]. Recall
that feature lp implements operation print on datatype Lit. Thus the
implementation of this feature contains: a) interface Exp that declares method print,
b) class Lit with a value field, a constructor, and the implementation of print
method, and c) class Test with a field ltree of type Lit, a constructor that creates
an instance of Lit and assigns it to ltree, and method run that calls method print
on ltree. See entry lp in Figure 1 for the short depiction of this feature’s contents.
lp can be implemented as follows1:

Feature lp constitutes the base code in our product line because it contains only
standard Java classes and interfaces which are used by all the other features of EPL.

Let us now consider the implementation of feature le. This feature implements
operation eval on Lit datatype. It adds the definition of method eval to an existing
interface Exp using an inter-type declaration as follows2:

// Exple.java
aspect Exple {
 abstract int Exp.eval();
}

We refer to this as an interface extension [10][11] which we denote with ∆Exp in
Figure 1. Similarly, we refer to the additions to existing classes as class extensions
[10][11], which are also shown in Figure 1 with symbol ∆ prefixed to the name of the
class. Feature le makes class extensions for classes Lit and Test. It adds a new
method to class Lit as follows:

// Litle.java
aspect Litle {
 int Lit.eval() { return value; }
}

1 Class members privileges are omitted for simplicity.
2 Aspect file names are formed with the name of the class or interface they are extending

followed by the feature they help implement. This naming scheme was chosen to make the
connection to the algebraic model described in Section clearer.

// Exp.java
interface Exp { void print(); }

// Lit.java
class Lit implements Exp {

int value;
Lit (int v) { value = v; }
void print() {

System.out.print(value);
}

}

// Test.java
class Test {

Lit ltree;
Test() { ltree = new Lit(10); }
void run() { ltree.print(); }
void static main(String[] args) {

Test test = new Test();
test.run();

}
}

4

We refer to this type of extension as method addition [10][11] and denote it in Figure 1
with the header of the method. Feature le also executes an additional statement in

www.manaraa.com

 Modeling Features in Aspect-Based Product Lines 9

method run of class Test that calls method eval on field ltree. We call this a method
extension [10][11] and denote it as ∆run() in Figure 1 . The implementation uses a
pointcut that captures the executions of method run and gets a reference to the object
target of the execution, and an around advice that contains the additional statement as
shown below:

// Testle.java
aspect Testle {
 pointcut LPRun(Test t): execution(void Test.run()) && target(t);
 void around(Test t) : LPRun(t) {
 proceed(t); System.out.println(t.ltree.eval());
 }
}

Seasoned AspectJ programmers may wonder at this point why the contents of the three
aspects are not aggregated (copied) into a single one. In previous work we showed that
composing aspects in this way is not equivalent to their separate file definitions under
the current AspectJ precedence rules [18]. Additionally, keeping classes and interfaces
extensions into separate aspects improves program understandability [6] and simplifies
the algebraic composition model described in Section 4.

As another example, consider the implementation of feature ap. First this feature
implements operation print on the Add datatype as follows:

// Add.java
class Add implements Exp {
 Exp left, right;
 Add (Exp l, Exp r) { left = l; right = r; }
 void print(){ left.print(); System.out.print("+"); right.print();}
}

// Testap.java
aspect Testap{
 Add Test.atree;
 pointcut APTest(Test t): execution(Test.new()) && target(t);
 void around(Test t) : APTest(t) {
 proceed(t); t.atree = new Add(t.ltree, t.ltree);
 }
 pointcut APRun(Test t):execution (void Test.run(..)) && target(t);
 void around(Test t) : APRun(t) { proceed(t); t.atree.print();}
}

Notice that Testap implements a construction extension denoted as ∆Test() in
Figure 1. The implementation of the rest of the features is similar to the ones just
described.

An EPL program is created by passing all the names of the files that implement its
features to the AspectJ compiler or weaver ajc [5]. When several pieces of advice
apply to the same join point an order of execution must be specified following
AspectJ precedence rules as the order is in general undefined. For example, if in the
program that implements both operations for Lit and Add (which we call LitAdd)

3 In [18] we describe several compositional problems that precedence clauses cause.

we would like to execute the method extensions to run in order ap, followed by that
in le, and ae, we would need to define a precedence clause in an aspect as follows3:

www.manaraa.com

 R.E. Lopez-Herrejon and D. Batory 10

aspect Ordering {
 declare precedence : Testae, Testle, Testap;
}

The whole composition of LitAdd becomes:
ajc Exp.java Lit.java Test.java Exple.java Litle.java Testle.java
Add.java Testap.java Addae.java Testae.java Ordering.java
-outjar LitAdd.jar

With this example, we present how use case slices can be used to model EPL features.

3 Use Case Slices

Use cases are a common technique to capture system functionality and requirements
using UML [21]. However the implementation of use cases using traditional object
oriented languages and techniques typically breaks use case modularity as their
implementation is scattered and tangled in the modules supported by the underlying
OO languages. This is the observation that Jacobson and Ng exploit to make the
connection with the work on aspects [15]. They propose use case slices as a
modularization unit to address these problems.

A use case slice contains ([15] pages 111-112):

• Collaboration A collaboration is a set of UML diagrams (interaction, class,
etc.) that describe how a use case is realized.

• Specific Classes Classes that are specific to a use case realization.
• Specific Extensions Extensions to existing classes specific to a use case

realization.

A use case slice is modeled as a special kind of package with stereotype << use
case slice >>. The package has the following basic contents:

• Use case slice name.
• A collaboration symbol (a dashed ellipse) and its name.
• Specific classes. Denoted with the standard UML symbol for classes. These

classes may have any relationships of standard class diagrams.
• Specific aspects. Denoted with a symbol similar to UML class. It has stereotype

<<aspect>>. This symbol has two compartments, one for the pointcuts and
one for the class extensions. Aspects may have the same relations between them
as supported by AspectJ.

Let us illustrate a use case slice with feature ap as shown in Figure 2. Recall that this
feature implements the print operation on the Add datatype. First, notice the name
of the use case slice and its collaboration. Since ap adds new class Add, this class is
represented using the standard class symbol. This feature also contains one
constructor extension and one method extension to class Test. The pointcuts
compartment of the Testap aspect contains the definitions of pointcuts APTest and
APTRun. The class extensions compartment contains class Test as all the extensions

.

.
.

that this aspect implements are for this class. In the attributes compartment of the

www.manaraa.com

 Modeling Features in Aspect-Based Product Lines 11

extensions are given names for reference, apAtree() and apRun(), and specify the
type of advice (around), the pointcuts they apply to (APTest and APRun) and a
denotation of their operations, addf and testf (names chosen arbitrarily) for adding
and testing a field (in this case atree).

Use case slices have the same relationships as use cases, extend,
generalization, and include with a comparable semantics. This relationship can
be used to describe how a program of the product line can be composed. To the best of
our understanding, use case slices do not provide modeling support for the variability
entailed by a product line design, thus a use case slice diagram conveys the design of a
single member of a product line. Use case slices can be further modularized into use
case modules, where each slice modularizes a different model of the use case lifecycle:
analysis, design, implementation, testing, etc. [15] (Chapters 4 and 10).

In this section we described the basic ideas of use case slices. However, they can
provide more sophisticated modeling functionality . For instance, their pointcuts,
classes, and class extensions can be parameterized, using UML templates, to allow
extra design flexibility [15]. In next section, we present how EPL can be algebraically
modeled with FOP.

4 Feature Oriented Programming (FOP)

Feature Oriented Programming (FOP) is a technology that studies feature modularity
and its use in program synthesis. FOP aims at developing a structural theory of pro-
grams to express program design, manipulation, and synthesis mathematically
whereby program properties can be derived from a program’s mathematical
representation. In this context, a program’s design is an expression, program
manipulation is expression manipulation, and program synthesis is expression

<<use case slice >>
ap

Add

Add(Exp, Exp)
print(): void

left : Exp
right : Exp

Add

Add(Exp, Exp)
print(): void

left : Exp
right : Exp

pointcuts
APTest= execution(Test.new())

&& target(t)
APRun= execution (void Test.run(..))

&& target(t)

<<aspect>>
Testap

class extensions

Test

atree: Add

operations
apAtree() { around (APTest) addf }
apRun() { around (APRun) testf }

pointcuts
APTest= execution(Test.new())

&& target(t)
APRun= execution (void Test.run(..))

&& target(t)

<<aspect>>
Testap

class extensions

Test

atree: Add

operations
apAtree() { around (APTest) addf }
apRun() { around (APRun) testf }

Test

atree: Add

operations
apAtree() { around (APTest) addf }
apRun() { around (APRun) testf }

ap

Fig. 2. Use case slice for feature ap

Test class the atree field appears as it is introduced by the aspect. In the operations
compartment, the method extension and constructor extensions are shown. The

www.manaraa.com

 R.E. Lopez-Herrejon and D. Batory 12

4.1 AHEAD in a Nutshell

An AHEAD model of a domain is an algebra that offers a set of operations, where
each operation implements a feature. We write M = {f, h, i, j} to mean model M
has operations (or features) f, h, i, and j. AHEAD categorizes features as constants
and functions. Constant features represent base programs, those implemented with
standard classes and interfaces. For example:

f // a program with feature f
h // a program with feature h

Function features represent program refinements or extensions that add a feature to
the program received as input. For instance:

i•x // adds feature i to program x
j•x // adds feature j to program x

where • means function application. The design of a program is a named expression
which we refer as a program equation. For example:

prog1 = i•f // prog1 has features f and i
prog2 = j•h // prog2 has features h and j
prog3 = i•j•h // prog3 has features h,j,i

4.2 An Algebraic Model of EPL

The AHEAD model of EPL is algebraically expressed as a set of features:

EPL = { lp, le, ap, ae, np, ne }

These features are themselves formed with classes, interfaces, class extensions, and
interface extensions. They are denoted as follows (where subscripts identify the
feature an element belongs to):

Thus features are hierarchical modules that can contain any number of nested
modules. Two features are composed by composing its elements by name (ignoring
subscripts). The elements that do not have a match are simply copied to the result of
the composition. For example, the composition of ap•lp is defined as follows:

A similar composition scheme is only depicted throughout Chapter 4 in Jacobson and
Ng’s book [15], where it is denoted with symbol +, however its realization is not
further described nor elaborated.

lp = { Explp, Litlp, Testlp } le = { Exple, Litle, Testle }
ap = { Addap, Testap } ae = { Addae, Testae }
np = { Negnp, Testnp } ne = { Negne, Testne }

lp = { Explp, Litlp, Testlp }
ap = { Addap, Testap }
ap•lp = { Explp, Litlp, Addap, Testap•Testlp }

evaluation. AHEAD (Algebraic Hierarchical Equations for Application Design), is a
realization of FOP that is based on a unification of algebras and step-wise
development [8][11]. FOP research predates the work on use case slices and aspects.

www.manaraa.com

 Modeling Features in Aspect-Based Product Lines 13

Scalability is a prominent concern in any software project. We explain now how
AHEAD addresses this concern. Normally, a program is specified in AHEAD by a
single expression. By organizing feature models as matrices (or k-dimensional cubes),
a program is specified by k expressions, one per dimension. This can drastically
simplify program specification, from O(nk) to O(nk) for k dimensions and n features
per dimension [11]. This complexity reduction is key for the scalability of AHEAD’s
program synthesis. Such matrix (or cube) is called an Origami Matrix. An example is
the EPL matrix in Figure 1. Each dimension of a matrix is represented with a model.
In EPL, the dimensional models are:

Operation = { print, eval }
Datatype = { Lit, Add, Neg }

operation= eval•print = Πiε(eval,print)Operation

datatype = Add • Lit = Πjε(Add,Lit)DataType

where ΠiεX denotes dot composition of a given sequence X of features. If we denote
MLA as the projected EPL matrix that forms the intersection of Lit and Add rows on
both columns, LitAdd program can be algebraically expressed as:

The algebraic representation of origami matrices has proven an useful abstraction to
analyze matrix orthogonality, a property that guarantees that the same program is pro-
duced for any valid (conforming to design constraints [11]) composition order [9].

AHEAD has been successfully used to synthesize large systems (in excess of 250K
Java LOC) from program equations [11]. Currently AHEAD does not support
AspectJ, it uses a language called Jak that can express all the types of extensions
required by EPL. We are working on extending and integrating an algebraic model of
AspectJ [18] into ATS. Nonetheless, the composition model described for EPL still
holds. Furthermore, FOP ideas have been used to implement an AspectJ version of the
core tools of AHEAD which generates 207+KLOC of which around 30% is aspect
code [19].

P = Πiε(eval,print)Πjε(Add,Lit)MLAoperation,datatype
= ae • le • ap • lp
= { Addae, Testae } • { Exple, Litle, Testle }
• { Addap, Testap } • { Explp, Litlp, Testlp }

= { Addae•Addap, Litle•Litlp, Exple•Explp, Testae•Testle•Testap•Testlp}

Features are implemented as hierarchies of directories and can contain multiple
artifacts other than source code. Artifact types are distinguished by the names of the
file extensions. Composition of non-code artifacts follows the same principles of
source code composition [10] and feature elements are composed when they match
both file name and extension. The AHEAD Tool Suite (ATS) provides tailored tools
for different artifacts which are selected by ATS’s composer tool according to the
artifact type. Currently ATS supports composition of equation files, extended Java
files, XML files, and grammar files [8]. Since AHEAD treats all artifacts from all life
cycle stages equally, we find that the ideas of use case slides and use case modules are
unified or indistinguishable in AHEAD.

Each model lists the features in each dimension. To specify a program, one expression
is defined per dimension. For instance, a specification of program LitAdd is:

www.manaraa.com

 R.E. Lopez-Herrejon and D. Batory 14

slices while the second describes an algebraic foundation of program composition and
synthesis.

On closer inspection there are several similarities. Use case slices consist of
classes, interfaces and their extensions implemented with aspects; which is identical
to the structure of features. Both features and use case slices can be nested
hierarchically and also aim at modularizing non-code artifacts. Similarly, both have
relative strengths and drawbacks which we analyze next.

One one hand, we presume that use case slice notation may be easy to adopt for
aspect modeling as UML is a popular modeling language. However, we believe the
research on use case slices lacks a clear composition model to map use case slices
models to concrete working implementations. In terms of source code, the translation
to AspectJ is missing an important compositional issue, precedence management.
Similarly for other artifacts, we find unclear how such modularization is actually
realized (implemented).

We believe that the differences and similarities described can be exploited for the
development of an aspect-based product line methodology that profits from both lines
of work. A feature modeling notation based on use case slices that can ease the
adoption by programmers, and an underlying scalable and multi-artifact composition
model for program synthesis.

Along the same lines, earlier work by Jacobson hints at the possibility of
expressing use case models with a simple algebra of program extensions [14].
However this line of thought is not further pursued in the work of use case slices. We
believe our work on AHEAD and FOP could provide a basis for an algebraic
foundation for use case slices. We are unaware of any tools that support use case
slices and generate AspectJ code from their models. In any case, such kind of tools
would encounter the same sort of problems of program synthesis of multiple artifacts
faced and solved by AHEAD.

6 Related Work

In UML 2.0 a collaboration is a set of class instances that play different roles [21]. In
that sense it is closer to the notion of collaboration-based designs which are the
origins of AHEAD [10]. Though use case slices also treat several types of UML
diagrams as part of a collaboration.

A close line of work to use case slices is Theme [8]. A theme, is an element of
design: a collection of structures that represent a feature [8]. Themes are classified
into: base themes that share structure and behaviour with other themes, and
crosscutting themes that correspond to aspects. Programs are built by composing

5 Integrating Use Case Slices and Features

The last two sections explore two seemingly disjoint facets of aspect-based product
line development. The first proposes modeling aspect-based features with use case

On the other hand, the strength of AHEAD is its composition model that supports
scalable composition of multiple artifacts. However, for programmers unfamiliar with
algebraic notation it may be less intimidating to adopt a familiar modeling notation
such as UML.

www.manaraa.com

 Modeling Features in Aspect-Based Product Lines 15

in an algebraic notation similar to AHEAD’s.
Several extensions of UML to model product lines have been proposed. One

example is Product Line UML-based Software engineering (PLUS) [13] which is a
method that brings FODA [12] modelling ideas to the realm of UML diagrams. PLUS
models features as packages of use cases that are stereotyped with the kind of feature
they implement such as optional, alternative, etc. Another example is the work of
Ziadi and Jézéquel that describes extensions to model variability in class and
sequence diagrams and an algorithm for product derivation based on UML model
transformations [23]. To what extent this line of work could benefit from aspect
research and algebraic modeling is an open question.

There are several pieces of work on aspect-based product line engineering.
Anastasopoulus and Muthig propose criteria to evaluate AOP as a product line
implementation technology [3]. Alves et al. study product line evolution and
refactoring techniques applied to mobile games [2]. Loughran et al. merge natural
language processing and aspect oriented techniques to provide tool support for
analyzing requirements documents and mining commonality and variability for
feature modeling [20].

7 Conclusions and Future Work

In this paper we compare and contrast use case slices and FOP as complimentary
facets in the modeling and synthesis of aspect-based product lines. We briefly
sketched how these two lines of work can serve as the foundation of a product line
methodology that exploits their synergy, feature modeling based on use case slices
and program synthesis based on FOP.

We plan to explore how to model algebraically and implement advanced use case
slices functionality such as parameterized pointcuts. A promising venue is the work
on Aspectual Mixin Layers (AML) which allows extensions of pointcuts and pieces of
advice using mixin technology [5]. AML provide some support for the
parameterization of use case slices. Similarly, the work by Trujillo et al. could be used
as a basis for the composition of UML diagrams that are part of a use case slice
collaboration [22].

References

1. AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/users/schwartz
2. Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: Extracting and Evolving Game

Product Lines. SPLC (2005)
3. Anastasopoulus, M., Muthig, D.: An Evaluation of Aspect-Oriented Programming as a

Product Line Implementation Technology. ICSR (2004)
4. AOSD Europe. Survey of Analysis and Design Approaches. Deliverable D11.

themes with a set of binding specifications. Thus Theme and AHEAD classify
features in a similar way, but their composition mechanism is significantly different.
Also, to the best of our knowledge there is no tool support for this approach. It would
be interesting to explore if the composition mechanism of Theme could be expressed

www.manaraa.com

 R.E. Lopez-Herrejon and D. Batory 16

8. Baniassad, E.L.A, Siobhán, C.: Theme: An Approach for Aspect-Oriented Analysis and
Design. ICSE (2004)

9. Batory, D.: Feature Oriented Programming. Class Notes. UT Austin. Spring (2006)
10. Batory, D., Lopez-Herrejon, R.E., Martin, J.P.: Generating Product-Lines of Product-

Families. ASE (2002)
11. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE,

June (2004)
12. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley (2000)
13. Gomaa, H.: Designing Software Product Lines with UML. From Use Cases to Pattern-

Based Software Architectures. Addison-Wesley (2004)
14. Jacobson, I.: Use cases and Aspects — Working Seemlessly Together. JOT. July (2003)
15. Jacobson, I., Ng, P.: Aspect-Oriented Software Development with Use Cases. Addison-

Wewley (2004)
16. Lopez-Herrejon, R.E., Batory, D.: Using AspectJ to Implement Product-Lines: A Case

Study. Tech. Report UT Austin CS. TR-02-45. September (2002)
17. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Advanced

Modularization Techniques. ECOOP (2005)
18. Lopez-Herrejon, R.E., Batory, D., Lengauer, C.: A disciplined approach to aspect

composition. PEPM (2006)
19. Lopez-Herrejon, R.E., Batory, D.: From Crosscutting Concerns to Product Lines: A Func-

tion Composition Approach. Tech. Report UT Austin CS. TR-06-24. May (2006)
20. Loughran, N., Sampaio, A., Rashid, A.: From Requirements Documents to Feature Models

for Aspect Oriented Product Line Implementation. MDD in Product Lines at MODELS
(2005)

21. Pilone, D., Pitman, N.: UML 2.0 In a Nutshell. A Desktop Quick Reference. O’Reilly
(2005)

22. Trujillo, S., Batory, D., Diaz, O.: Feature Refactoring a Multi-Representation Program into
a Product Line. GPCE (2006)

23. Ziadi, T., Jézéquel, J.-M.: Software Product Line Engineering with the UML: Deriving
Products. FAMILIES project research book. To appear in Springer LNCS.

5. Apel, S., Leich, T., Saake, G.: Aspectual Mixin Layers: Aspects and Features in Concert.
ICSE (2006)

6. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. GPCE (2006)
7. AspectJ, http://eclipse.org/aspectj/

www.manaraa.com

Join Point Patterns:
A High-Level Join Point Selection Mechanism

Walter Cazzola1 and Sonia Pini2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Department of Informatics and Computer Science

Università degli Studi di Genova, Italy
pini@disi.unige.it

Abstract. Aspect-Oriented Programming is a powerful technique to better mod-
ularize object-oriented programs by introducing crosscutting concerns in a safe
and noninvasive way. Unfortunately, most of the current join point models are too
coupled with the application code. This fact hinders the concerns separability and
reusability since each aspect is strictly tailored on the base application.

This work proposes a possible solution to this problem based on modeling the
join points selection mechanism at a higher level of abstraction. In our view, the
aspect designer does not need to know the inner details of the application such
as a specific implementation or the used name conventions rather he exclusively
needs to know the application behavior to apply his/her aspects.

In the paper, we present a novel join point model with a join point selection
mechanism based on a high-level program representation. This high-level view of
the application decouples the aspects definition from the base program structure
and syntax. The separation between aspects and base program will render the
aspects more reusable and independent of the manipulated application.

1 Introduction

Aspect-oriented programming (AOP) is a powerful technique to better modularize OO
programs by introducing crosscutting concerns in a safe and noninvasive way. Each AOP
approach is characterized by a join point model (JPM) consisting of the join points, a
mean of identifying the join points (pointcuts) and a mean of raising effects at the join
points (advice) [9]. Crosscutting concerns might be badly modularized as aspects without
an appropriate join point definition that covers all the interested elements, and a pointcut
definition language that allows the programmer of selecting those join points.

In most of the AOP approaches, the pointcut definition language allows the pro-
grammer of selecting the join points on the basis of the program lexical structure, such
as explicit program elements names. The dependency on the program syntax renders
the pointcuts definition fragile [7] and strictly couples an aspect to a specific program,
hindering its reusability and evolvability [6]. The required enhancement should consist
of developing a pointcut definition language that supports join points selection on a
more semantic way [4]. To provide a more expressive and semantic-oriented selection
mechanism means to use a language that captures the base-level program behavior and

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 17–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

18 W. Cazzola and S. Pini

properties abstracting from the syntactic details. Several attempts in this direction have
been done but none of these completely solve the problem. They focus on specific be-
havioral aspects such as execution trace and dataflow neglecting some others. Moreover,
they still rely on name conventions and on the knowledge of the implementation code.
We think that the problem could be faced and solved by selecting the join points on an
abstract representation of the program, such as its design information.

In this paper, we propose a join point model with a pointcut definition language that
allows the selection of the join points abstracting from implementation details, name
conventions and any other source code dependency. In particular the aspect program-
mer can select the interested join points by describing their supposed location in the
application through UML-like descriptions (basically, activity diagrams) representing
computational patterns on the application behavior; these descriptions are called join
point patterns (JPPs). The join point patterns are just patterns on the application behav-
ior, i.e., they are not derived from the system design information but express properties
on them. In other words, we adopt a sort of enriched UML diagrams to describe the
application control flows or computational properties and to locate the join points inside
these contexts. Pointcuts consist of logic composition of join point patterns. Thus, they
are not tailored on the program syntax and structure but only on the program behavior.

The rest of the paper is organized as follows: in section 2 we investigate the limitations
of some of the other join point models, in section 3 and section 4 we introduce our join
point model and the weaving process respectively; finally, in section 5 we draw out our
conclusions.

2 Limits of the Join Point Models

The join point model, in particular its pointcut definition language, has a critical role in
the applicability of the aspect-oriented methodology. The pointcut definition language
allows to determine where a concern crosscuts the code. Since the beginning, the pointcut
definition languages are evolved to improve their expressivity, their independence of the
base code and the general flexibility of the approach. The first generation of pointcut
definition languages (e.g., AspectJ pre v1) were strictly coupled to the application
source code because they allow of selecting the join points on the signature of the
program elements. To reduce the coupling problem, the next generation of pointcut
definition languages introduced wildcards (e.g., AspectJ v1.3, HyperJ), this technique
reduces the coupling but introduces the necessity of naming conventions; a new problem
raises since the naming conventions are not checkable by the compilers and their respect
cannot be guaranteed. Recently, some aspect-oriented languages adopted meta-data or
code instrumentation (e.g., AspectJ v1.5, AspectWerkz) to locate the join points. This
approach decouples the aspects from the base program syntax and structure. The meta-
data are used as a placeholder of sorting that can be triggered to get a customizable
behavior. Anyway this technique does not resolve the problem as well, it just shifts the
coupling from the program syntax to the meta-data syntax. Moreover, this approach
breaks in an explicit way the obliviousness [5] property. To get the obliviousness the
aspect programmer should be unaware of the base program structure and syntax to
apply the aspects and vice versa.

www.manaraa.com

Join Point Patterns: A High-Level Join Point Selection Mechanism 19

In this situation, the aspect programmer must have a global knowledge of the base
program to be sure that his/her pointcuts work as expected. Moreover, the JPMs based
on these kinds of pointcut definition languages are suitable to select join points that are
at the object interface level whereas badly fit the need of capturing join points expressed
by computational patterns, such as inside loops or after a given sequence of statements.

Pointcuts definition heavily relies on how the software is structured at a given moment
in time. In fact, the aspect developers subsume the structure of the base program when
they define the pointcuts; the name conventions are an example of this subsumption.
They implicitly impose some design rules that the base program developers have to
respect when evolve their programs to be compliant with the existing aspects and to
avoid of selecting more or less join points than expected.

In general, the previously described join point models are sufficient for most cases but
there are situations where a more fine-grained, flexible and semantic join point model is
required — more on the join point models limitations can be read in [7,4,6]. Therefore,
the AOP potentialities are limited by the poorness of the join point selection mechanisms.

3 JPP Specification Language

Design information (UML diagrams, formal techniques and so on) abstracts from the
implementation details providing a global, static and general view of the system in
terms of its behavior and should permit to locate and select the join points thanks to their
properties and to the context instead of name conventions and syntactic details [4]. In
this respect, we propose to overcome the limitations of the pointcut definition languages
by describing the join points position (i.e., by defining the pointcuts) as a pattern on the
expected application design information rather than on the code.

The join point patterns are the basic elements of our pointcut definition mechanism
(called join point pattern specification language). They describe where local or region
join points could be located in the application behavior abstracting from the implemen-
tation details: when a join point is located in the application high-level representation it
will be automatically mapped on its code. The interested behavior can be well described
by using design techniques, such as UML diagrams, that provide an abstraction over the
application structure. Thanks to this abstraction, the join point patterns can describe the
join point positions in terms of the application behavior rather than its code. In other
words, we achieve a low coupling of the pointcut definitions with the source code since
the join point pattern is defined in terms of design model rather than directly referring
to the implementation structure of the base program itself.

The join point patterns are graphically specified through a UML-like description. A
visual approach is more clear and intuitive and makes more evident the independence
from the program source code. Finally, this approach is not limited to a specific pro-
gramming language but can be used in combination with many. At the moment, we are
using the Poseidon4UML program for depicting the join point patterns but we are
developing an ad hoc interface for that, and the Java as programming language.

In the application, there is a clear separation between the application structure (e.g.,
class declarations) and its behavior (e.g., methods execution) and the aspects can
affect both the structure and the behavior. In this paper, we only focus on the behavioral

www.manaraa.com

20 W. Cazzola and S. Pini

join point pattern definition; since affecting the application structure simply consists on
introducing and removing elements and can be faced as explained in [2].

3.1 JPP Terminology and Description

We borrowed the terms join point, pointcut and advice from the AspectJ terminology
but we use them with a slightly different meaning. The join points are hooks where new
behaviors may be added rather than well defined points in the execution of a program. In
particular we consider two different kinds of join points, local join points that represent
points in the application behavior where to insert the advice code, and region join points
that represent portions of the application behavior that might be replaced by the advice
code. The pointcuts are logical compositions of join points selected by the join point
patterns rather than logical composition of queries on the application code. Whereas the
term advice conserves the same meaning as in AspectJ.The join point pattern is a tem-
plate on the application behavior identifying the join points in their context. In practice
the join point patterns are UML diagrams of sorting, with a name, describing where
the local and region join points can be located in the application behavior. A join point
pattern is a sample of the computational flow described by using a behavioral/execution
flow template. The sample does not completely define the computational flow but only
the portions relevant for the selection of the join points, i.e., the join point patterns pro-
vide an incomplete and parametric representation of the application behavior. Each join
point pattern can describe and capture many join points; these join points are captured
together but separately advised.

Now, we will give a glance at the join point pattern definition language “syntax” by
an example. Let us consider the implementation of the observer pattern as an aspect to
observe the state of a buffer. TheBuffer instances support only two kinds of operations:
elements insertion (put action) and recovery (get action). The observer will monitor the
use of these operations independently of their names and signatures.

The join point pattern depicted in Fig. 1 captures all the method executions that
change the state of the instances of the Buffer class. The activity diagram de-
scribes the context where the join point should be found; more details are used
to describe the context and more the join point pattern is coupled to the appli-
cation code. The exact point matched by the �joinpoint� depends on which
element follows the stereotype: if the �joinpoint� is located on a flow line be-
tween two swimlanes it matches a call of a method with the behavior expressed
in the other swimlane; if the �joinpoint� is located on a flow line inside
a swimlane it matches the execution of the next instruction, if the element has
a �exactmatch� stereotype, or the execution of the next block if the ele-
ment has a �block� stereotype, or the execution of the next method if the el-
ement has a �method� stereotype. The use of meta variables grants the join
point pattern independence from a specific case, and they are useful to denote that
two elements have to refer to the same variable of the same method. Meta vari-
ables permit to access variables, methods, fields and so on used into the imple-
mentation code without knowing their exact names, but exclusively knowing their
role. At the contrary, if the aspect programmer want to couple the join point

www.manaraa.com

Join Point Patterns: A High-Level Join Point Selection Mechanism 21

ObserverPattern

produce, consume

«joinpoint consume»«joinpoint produce»

«method» «method»
use *.Field in left

use (*.Field in right) or
(*.Field in return)

«or»

«exactmatch»
*.foo(..)

method meta-variable
any foo(..)

variable meta-variable
Field

context
Buffer

Fig. 1. The Observer JPP

pattern to the application code, they
can use directly constant variable and
method names (without declaring them
as meta-variables).

In the example, foo and Field
are meta-variables, respectively a
method meta-variable, i.e., a variable
representing a method name and a
variable meta-variable, i.e., a variable
representing a variable name. In the
method meta-variables definition, the
method signature is specified; if nec-
essary, type meta-variables, i.e., a vari-
able whose values range on types, can
be used. Meta-variables got a value dur-

ing the pointcut evaluation and their values can also be used by the advice. This permits
to decouple the join point pattern from the code.

The behavior we are looking for is characterized by: i) the call to a method with any
signature, ii) whose body either writes a field of the target object (i.e., a method belonging
to the put family with any name and signature) or reads a field of the target object (i.e., a
method belonging to theget family with any name and signature). This join point pattern
explicitly refers to the concept of a method that changes the Buffer state rather than
trying to capture that concept by relying on implicit rules such as naming conventions
about the program implementation structure. In particular, in the caller swimlane, we
look for the invocation of a generic method named foo(..)1 whereas in the callee
swimlane we look at the method body for the assignment to a generic field of the class
(i.e., the behavior of a method of the put family) or, at either the use of generic class
field into the right part of an assignment or the use of the field in a return statement (i.e.,
the behavior of a method of the get family). The former should be an exact statement
match, | i.e., we are looking for exactly that call | whereas in the latter we are looking
for a specific use of a field in the whole method body. This difference is expressed by
using the following JPP syntax:

– a yellow rounded rectangle, called template action, indicates that we are looking for
a meta-variable into a specific kind of statements in the searching scope, indicated
by a stereotype; the �method� stereotype limits the search to the method body
whereas the �block� stereotype to the current block;

– we can look for the use of a meta-variable in a left (left) or right (right) part of
an assignment, in a boolean expression (booleanCondition), and in a generic
statement (statement) or in their logic combination;

– a red rounded rectangle identified by the �exactmatch� stereotype, called (ac-
cording to UML) action, indicates one or more statements, which must exactly
match a sequence of code; the names used inside these blocks can be meta-variables,
constant variable names (i.e., variable names used into the code) or if not useful to
the pattern definition indicated as (i) with i ∈ N.

1 Note that foo(..) is a method meta-variable and its signature is not specified.

www.manaraa.com

22 W. Cazzola and S. Pini

The join point possible location is indicated by the �joinpoint� stereotype attached
to an arrow in the case of local join points and by the �startjoinpoint� and
�endjoinpoint� stereotypes attached to the arrows to denote the borders of a
region join points. All the searched join points name are listed in the window in the
low-right corner of the join point pattern specification.

The join point pattern in Fig. 1 explicitly refers to the elements insertion and recovery
behavior rather than trying to capture those behaviors by relying on naming conventions
about the program implementation, such as put* and get*. Consequently, the point-
cuts defined by using this pattern do not change when the base program evolves as long
as the join points it has to capture still conserve the same properties; so if a new method
inserting two elements in the buffer is added to the Buffer class it is captured by our
join point pattern as well independently of its name.

We have adopted a loose approach to the description of the computational flow. In
the join point patterns, based on activity diagrams, the lines with a solid arrowhead
connecting two elements express that the first immediately follows the second, and the
lines with a stick arrowhead (see Fig. 1) express that the first follows the second before
or later, i.e., zero or more not relevant actions2 could occur before the second action
occurs, the number of actions that could occur is limited by the scope.

In most cases, the pointcuts refer to properties of individual join points in isolation
without reference to contextual information. Our join point pattern definition language
can express temporal relations between events and actions inside the join point pattern
definitions. In particular, a join point can be selected only if a specific action is already
occurred or will occur in the next future. The future prediction is feasible because
the design description depicts all the behavioral information and therefore evaluated at
compile time, if it does not involve dynamically computed values.

Our join point model is strictly based on the computational flow, so we do not need
to differentiate between before and after advice but we can simply attach the
�joinpoint� stereotype to the right position, i.e., before or after the point we want
to advice. A special case is represented by the region join points which match portions of
the computational flow instead of a single points; the whole matched portion represents
the join point and will be substituted by the advice code.

3.2 Aspects That Use Join Point Patterns

A join point pattern simply describes where the join points can be found, to complete
the process we must declare an aspect where the join point patterns are in association
with advice code to weave at the interested join points.

The aspect definition, like in most AOP languages, includes pointcut and advice
definitions and their relations. Moreover, it declares all the used join point patterns
and which join points it imports from them. Both pointcuts and advices will use these
information in their definition.

The following Observer aspect imports the produce and the consume join
points from the ObserverPattern join point pattern (see Fig. 1). The join point
patterns can define many join points but it is not mandatory to import all of them.

2 These actions do not participate in the description of the join point position, so they are con-
sidered not relevant.

www.manaraa.com

Join Point Patterns: A High-Level Join Point Selection Mechanism 23

public aspect Observer {
void notify() { ... }
public joinpointpattern ObserverPattern(produce,consume);
public pointcut p() : produce();
public pointcut c() : consume();
advice() : p() && c() {notify();}

}

The pointcuts are defined as a logical combination of the imported join point definitions.

4 Weaving in JPP

One central component in AOP is the weaver. Given a set of target programs and a set
of aspects, the weaver introduces the code of the advices at the captured join points in
the target programs during the weaving process. Our approach does not differ in that
and the weaving process must be realized.

Notwithstanding the join point patterns are language independent, the weaving pro-
cess strictly depends on the program it has to modify. At the moment, we have chosen
the Java 5 programming language because its meta-data facility, by providing a stan-
dard way to attach additional data to program elements, has the potential to simplify
the implementation of the weaving process. The weaving process in JPP consists of the
following phases:

– pre-weaving phase: the abstraction level of the join point patterns and of the Java
bytecode is equalized;

– morphing/matching phase: the matching is performed by traversing the model/graph
of the pattern and the model/graph of the program in parallel;

– join points marking phase: when the pattern and the program models match, each
captured join point is annotated at the corresponding code location;

– advice weaving phase: the annotated bytecode is instrumented to add the advice
code at the captured join points.

Pre-Weaving Phase. The target program and the join point patterns are at a dif-
ferent level of abstraction. To fill this gap and allowing the weaving, it is necessary to
build a common representation for the target program and the join point patterns (the
pre-weaving phase). Structured graphs [1] perfectly fit the problem; both program com-
putational flow (through its control flow graph) and join point patterns can be represented
by graphs and the structured graphs provide a graph representation and manipulation
mechanisms at variable level of details. Relaxing the quantity of details used in the
control flow graph it is possible to fill the gap with the join point patterns.

A structured control flow graph is generated from the control flow graphs of each
method by using BCEL on the application bytecode and imposing a structure on that.
Each instruction is a node of the structured flow graph and each method call is a macro-
node, i.e., a node that can be expanded to the called method control flow graph. The
structured graphs are stored in a special structure that separates the content from the
layout saving the space and improving the efficiency of the navigation and of the layout

www.manaraa.com

24 W. Cazzola and S. Pini

reorganization (particularly useful on already partially woven programs). To simplify
the matching of some join point patterns, an index has been built on the graph to provide
access points that differ from the main() method.

Analogously, each join point pattern is stored into a structured graph. Since, the join
point patterns already have a graph structure the conversion is less problematic. In this
case the macro-structure provide a mechanism to navigate between different swimlanes
and to skip some context details, e.g., in the case of a template actions.

Morphing/Matching Phase. The morphing/matchingphase consists of looking for
(matching) the join point patterns in the application control flow graph. Since, the basic
elements of our pointcut definition language are expressed in a UML-like form, and the
UML is a diagrammatic language, it is reasonable and promising to apply techniques
developed in the graph grammar and graph transformation field to get our goal.

In particular, we have to solve a graph matching problem or better a model-based
recognition problem, where the model is represented as a (structured) graph (the model
graph, GM), and another (structured) graph (the data graph, GD) represents the program
control flow graph where to recognize the model. In model-based pattern recognition
problems, given GM and GD, to compare them implies to look for their similarities.

Graph and sub-graph isomorphism are concepts that have been intensively used in
various applications. The representational power of graphs and the need to compare
them has pushed numerous researchers to study the problem of computing graph and
sub-graph isomorphisms. What we need is a inexact graph matching [8], or better a
sub-graph inexact matching since one graph (the join point pattern representation) is
smaller than the other (the program control flow graph representation).

Ours are attributed graphs, i.e., their vertices and edges contain some extra informa-
tion, such as instructions (both for application and join point patterns actions), template
actions and loose connection (stick arrows) for the join point patterns. Therefore, the type
of our matching algorithm cannot be exact because the matching between corresponding
parts of two graphs is possible even if the two parts are not identical, but only similar
according to a set of rules involving predefined transformations. The inexactness implies
that the join point pattern graph is considered matchable with the application one if a set
of syntactic and semantic transformations can be found, such that the transformed join
point pattern graph is isomorphic to a portion of the application graph.

During the morphing/matching phase, all the join point pattern graphs must be com-
pared against the application control flow graph, the number of matching can be reduced
by using the context information stored for every pattern. For each node of both graphs:

– if the current pattern element is a real Java instruction (i.e. it is from an action
element), the algorithm tries to unify it with the current application node;

– if the current pattern element is a template action, the algorithm matches it with the
current application node when there is a semantic transformation that transforms
the first into the second node; if the match fails, the algorithm iterates on the next
application node inside the scope defined by the scope stereotype.

In both cases, the unification process can fail or success with a set of variable bindings,
known as a unifier. Found a match, the outgoing edge of the current pattern element
gives to the algorithm information about how to continue the match: according to the
kind of edge, the next pattern element should match exactly the next application node

www.manaraa.com

Join Point Patterns: A High-Level Join Point Selection Mechanism 25

(solid arrowhead) or should match one of the next nodes not necessary the first (stick
arrowhead). At the end of this process, the algorithm returns a set (that could be empty)
of code locations for the captured join points.

Join Points Marking Phase. Each captured join point is marked directly in the
bytecode by annotating its location. As already stated, Java 5 incorporates the concept
of custom annotation that we could exploit in this phase. Unfortunately, Java annotation
model permits of annotating only the element declarations, whereas we need to annotate
the method body since the join points may be at every statement.

To overcome this problem, we have extended Java, codename @Java, to arbitrary
annotate program elements such as blocks, single statements, and expressions. This work
is partially based on the experience we have done in extending the annotation model of
C# [3] that suffers of the same limitations. @Java minimally extends Java. The only
real difference from the standard mechanism is related to the possibility of annotating a
code block or an expression. In these cases, the annotation must precede the first state-
ment of the block or the beginning of the expression to annotate and the whole block or
expression must be grouped by braces to denote the scope of the annotation.

Every join point annotation, contains the join point pattern name, the join point name,
the join point parameters, and when necessary, the run-time residual. Current implemen-
tation provides a compiler based implementation that does almost of the weaving work
at compile time. This solves and then captures most of the join points at compile time
and avoids unnecessary run-time evaluations and overheads. Some pointcuts, that needs
run-time information to be evaluated, still cannot be completely evaluated at compile-
time; in these cases the pointcut is reduced and a small residual for the not evaluated part
is annotated at the potential join points waiting for the dynamic evaluation. Its evaluation
will determine if the join point really has to be advised or not. However, the correspond-
ing overhead is contained and the necessary residuals with our approach are less then in
AspectJ. At the end of this phase the application is ready to be advised and to speed up
the last phase an index on the captured join points is built.

Advice Weaving Phase. In this phase the bytecode application will be really modi-
fied. For every advice associated to a pointcut declaration we generate the bytecode of the
advice by using the BCEL and in particular the InstructionLists
structure. We retrieve the annotations associated to that pointcut to locate where the
advice code must be inserted, then we use the InstructionList.append(),
the Instruction-List.insert() or the InstructionList.delete()
methods to insert the advice InstructionList into the application
InstructionList. Finally, when the instruction list is ready to be dumped to pure
bytecode, all symbolic references must be mapped to real bytecode offsets. This is done
by a call to the getMethod() method.

5 Conclusions

Current AOP approaches suffer from well known problems that rely on the syntactic
coupling established between the application and the aspects. A common attempt to give
a solution consists of freeing the pointcut definition language from these limitations by
describing the join points in a more semantic way.

www.manaraa.com

26 W. Cazzola and S. Pini

This paper has proposed a novel approach to join points identification and to decouple
aspects definition and base-code syntax and structure. Pointcuts are specified by using
join point patterns expressed on the application expected behavior. More precisely, a
join point pattern is a template on the application expected behavior identifying the join
points in their context. In particular join points are captured when the pattern matches
portion of the application behavior.

Compared with current approaches, we can observe some advantages; first of all,
we have a pointcuts definition more behavioral. In the join point pattern definition we
identify the context of the computational flow we want to match, and the precise point
we want to capture. Notwithstanding that, we can still select the join points by using
syntactic and structural specification, it is only necessary a more detailed join point pat-
tern. The graphical definition of join point patterns is more intuitive and comprehensible
for programmers. Moreover, it better demonstrates where and how an aspect can affect a
program. Last but not least, our approach is quite general, it can be applied to every pro-
gramming language (at the cost of adapting the weaving algorithm to the characteristics
of the new language) and used to mimic all the other approaches to AOP.

There is also a drawback, the matching phase is very complex, and it demands time
and space. Fortunately, most of the weaving phase is done once during the compilation
and does not affect the performance of the running program.

References

1. M. Ancona, L. De Floriani, and J. S. Deogun. Path Problems in Structured Graphs. The
Computer Journal, 29(6):553–563, June 1986.

2. W. Cazzola, A. Cicchetti, and A. Pierantonio. Towards a Model-Driven Join Point Model.
In Proceedings of the 11th Annual ACM Symposium on Applied Computing (SAC’06), pages
1306–1307, Dijon, France, on 23rd-27th of Apr. 2006. ACM Press.

3. W. Cazzola, A. Cisternino, and D. Colombo. Freely Annotating C#. Journal of Object Tech-
nology, 4(10):31–48, Dec. 2005.

4. W. Cazzola, J.-M. Jézéquel, and A. Rashid. Semantic Join Point Models: Motivations, Notions
and Requirements. In Proceedings of the Software Engineering Properties of Languages and
Aspect Technologies Workshop (SPLAT’06), Bonn, Germany, on 21st Mar. 2006.

5. R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quantification and Obliv-
iousness. In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of Concerns,
Minneapolis, USA, Oct. 2000.

6. A. Kellens, K. Gybels, J. Brichau, and K. Mens. A Model-driven Pointcut Language for More
Robust Pointcuts. In Proceedings of Software engineering Properties of Languages for Aspect
Technologies (SPLAT’06), Bonn, Germany, Mar. 2006.

7. C. Koppen and M. Störzer. PCDiff: Attacking the Fragile Pointcut Problem. In Proceedings
of the European Interactive Workshop on Aspects in Software (EIWAS’04), Berlin, Germany,
Sept. 2004.

8. L. G. Shapiro and R. M. Haralick. Structural Descriptions and Inexact Matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 3(5):504–519, 1981.

9. N. Ubayashi, G. Moriyama, H. Masuhara, and T. Tamai. A Parameterized Interpreter for
Modeling Different AOP Mechanisms. In D. F. Redmiles, T. Ellman, and A. Zisman, ed-
itors, Proceedings of the 20th IEEE/ACM international Conference on Automated Software
Engineering (ASE’05), pages 194–203, Long Beach, CA, USA, 2005. ACM Press.

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 27 – 31, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Critical Systems Development Using Modeling
Languages – CSDUML 2006 Workshop Report

Geri Georg1, Siv Hilde Houmb2, Robert France1, Steffen Zschaler3,
 Dorina C. Petriu4, and Jan Jürjens5

1 Colorado State University
Computer Science Department

{georg, france}@cs.colostate.edu
2 Norwegian University of Science and Technology

Computer Science Department
siv-hilde.houmb@telenor.com

3 Technische Universität Dresden
Department of Computer Science

Steffen.Zschaler@tu-dresden.de
4 Carleton University

Systems & Computer Eng. Dept.
petriu@sce.carleton.ca

5 The Open University
Computing Department

j.jurjens@open.ac.uk

Abstract. The CSDUML 2006 workshop is a continuation of the series regarding
development of critical systems using modeling languages. The report summarizes
papers presented and discussion at the workshop.

1 Introduction

CSDUML 2006 was held in conjunction with the MoDELS 2006 conference in Genoa,
Italy. The workshop took place on Sunday, October 1, 2006. Twenty-five people from
both academia and industry attended the workshop. Six papers were presented during the
day. However, the major part of our time was spent in discussions. The paper
presentations were organized in four sessions, with discussions after the first, second, and
fourth presentation sessions. The report summarizes the results of these discussions. The
papers were structured into the following four sessions: 1) specification and analysis, 2)
verification, 3) automatic system generation, and 4) case studies. The case studies
contained results from some, but not all of the other categories. This report is structured
according to the presentation sessions, summarizing the papers, discussion points, and
outcomes.

Session 1: Specification and Analysis, Alexander Knapp Session
Chair

The papers presented in this session covered modeling specification approaches and
tool-support for their analysis. Two papers were presented in this session:

www.manaraa.com

28 G. Georg et al.

1) Quality-of-Service Modeling and Analysis of Dependable Application Models,
by András Balogh and András Pataricza, presented by András Balogh. The paper
presents non-functional component and system property modeling and analysis to
improve software quality and allow early recognition of possible problems.

2) Modeling an Electronic Throttle Controller using the Timed Abstract State
Machine Language and Toolset by Martin Ouimet, Guillaume Berteau, and Kristina
Lundqvist, presented by Martin Ouimet. The paper presents the Timed Abstract State
Machine (TASM) language and toolset, to specify and analyze reactive embedded
real-time systems. Non-functional properties including timing behavior and resource
consumption can be specified, and their behaviors simulated for analysis purposes.

The session chair proposed a set of open research questions that still remain in
light of the research presented in these papers. These questions stimulated the general
discussion of critical systems specification and analysis. The discussion either reached
conclusions or raised further points in the following three areas.

• Specification. Critical systems specifications are often cross-cutting, so aspect or
other feature-oriented techniques may be applicable. These techniques must be able
to specify the interference between QoS attributes, and allow for simple checks,
refinement, and systematic overviews of particular properties. There is a difference
between closed, predictable, embedded-style systems, and open, unpredictable
business-critical systems. Interference between critical properties can be defined
away in many closed systems, which greatly simplifies both specification and
analysis. Open systems, by contrast, are subject to unpredictable interactions
among critical properties.

• Analysis. Critical system property analysis varies between properties, so different
tools are needed for each type of analysis. Additionally, many tools require model
transformations prior to use. However, it is not clear how analysis techniques will
scale to large system specifications. Traditional analysis tools may not be useful
under all conditions. For example, trade-off analysis and prioritization must be
done in light of the business domain. A typical strategy is to minimize hardware
cost, as determined by complete cost of ownership (via supplier maintenance
contracts). Analysis techniques still need to be integrated into newer specification
techniques, such as aspect-specification techniques.

• Information dissemination. The need for a common platform for the dissemination
and exchange of state-of-the-art research in languages and specification and
analysis tools became clear in the discussions. Discussion included the ReMODD
project and websites providing information on UML Case tools
(http://www.jeckle.de/umltools.htm). As researchers, we should be using mediums
such as these to enhance knowledge and discussion.

Session 2: Verification, Kevin Lano Session Chair

One paper in this session was presented. It concerned consistency checking of UML-
based behavioral models:

1) Model Checking of UML 2.0 Interactions by Alexander Knapp and Jochen
Wuttke. The paper describes a translation of UML 2.0 interactions into automata for

www.manaraa.com

 Critical Systems Development Using Modeling Languages 29

model checking to determine whether an interaction can be satisfied by a given set of
message exchanging UML state machines.

The second discussion highlighted four areas.

• Consistency checking needs to occur across models and across critical system
properties. In particular different types of models, e.g. deployment diagrams, static
structure, and behavioral models, all need to be checked for consistency across the
critical system properties. Workflow could be useful in supporting such checks.
For example, when decisions are made regarding physical deployment, consistency
checks need to occur to ensure that desired behavior still exists, and that critical
properties are still present. The EU project Model Plex may have applicable work
in this area with examples and techniques to trace model changes and verify
run-time models.

• Techniques such as fault injection into state machines to check interactions could
be used to verify critical system properties. Correctness by construction may also
be a viable option during model transformations.

• An outstanding issue in verification is modularity. It isn’t clear if UML model
structure is sufficient. It also is not clear how to deal with hierarchical or
incomplete models.

• Domain specific languages and profiles are two techniques leading to similar
modeling results. Their use should be determined by domain experts. In general,
the group considered profiles less work for the person creating them, but often
more work for those trying to use them. This is particularly true when multiple,
perhaps interacting profiles increases. An example is chip design, where 4-5
profiles are needed, which may or may not be very well aligned in terms of their
use, interactions, and analysis tools. DSLs are more work to come up with, but may
present a better language for developers to understand, and better aligned methods,
techniques, and tools. An issue in this space is again the lack of disseminated
knowledge and experience across the community.

Session 3: System Generation, Robert France Session Chair

The paper in this session covered the use of model-driven engineering technology for
the generation of software for critical systems.

1) Automated Synthesis of High-Integrity Systems using Model-Driven
Development by K. Lano and K. Androutsopolous. The paper describes the application
of MDD to two areas of high-integrity systems: reactive control systems, and web
applications. Semantic consistency analysis using two methods is also described.

Session 4: Case Studies, Geri Georg Session Chair

The two papers in this session presented case studies in the critical-systems domain.

1) Experiences with Precise State Modeling in an Industrial Safety Critical System
by Nina Holt, Bente Anda, Knut Asskildt, Lionel C. Briand, Jan Endresen, and Sverre

www.manaraa.com

30 G. Georg et al.

Frøystein. This paper reports on experiences using statechart-driven UML modeling
in the development of a safety-critical system at ABB.

2) Specification of the Control Logic of an eVoting System in UML: the ProVotE
experience by Roberto Tiella, Adolfo Villafiorita, and Silvia Tomasi. This paper
presents some of the issues and challenges faced during the development of an
electronic voting machine, and how UML models were integrated in the development
process. Some existing tools were extended to support the formal verification of the
UML specifications.

The third discussion included the third and fourth session papers, as well as a
general recap of topics discussed throughout the day. Conclusions and outstanding
issues were drawn in five areas.

• Verification. Most verification work seems to be in state machines, using model
checking. In part, this is due to the fact that verification of functional properties is
more mature than for non-functional properties; it is harder to verify properties such
as performance, timing, and security. There is some work going on using activity
diagrams to perform quality constraint consistency checking. It may also be possible
to check semantic consistency using OCL for verification, and reasoning over traces,
pre- and post- conditions. It is also the case that deployment diagrams should be used
since their information influences preserved properties in dynamic behavior models.
Verifications need to be formal, but there are things we want to describe and there is
no language to describe them; formalisms don’t exist in these cases. Fault injection
may be a technique we can use; based on state charts and fault states. We need to note
however, that there is a difference between fault analysis and security analysis: faults
can be simple, whereas attacks are usually quite complex – any real problem has
infinite state space. Research should continue exploring the combination of model
checkers and theorem provers to make the best of both worlds.

• Accidental Complexity. Using UML for critical system development is very
complex. We discussed whether this is inherent in the nature of UML, or whether it
is accidental – stemming from the way we use UML to develop these kinds of
systems? If this complexity is introduced by our techniques and tools, it should be
avoided whenever possible. Complexity definitely hinders acceptance by
developers. Inherent complexity can perhaps be addressed through the use of
domain specific languages. Profiles seem to make the problem worse.

• DSLs and representations. Domain experts have to restrict the use of UML notations,
and have to present the subset in a way that can be useful; the language must allow
engineers to be more effective without fundamentally changing what they do. In some
sense they are like shortcuts, in fact it may be possible to derive DSLs from
determining what shortcuts developers use. DSLs are necessary because while UML
models capture what we mean, the diagrams are hard to create and sometimes
understand – leading to complexity (accidental?). For example, in many cases text
would be easier to create and understand than activity diagrams. An idea we might
explore is to generate graphical representations from text, recognizing in some cases
that the graphical representation might not be more intuitive than the text, and
discarding it in that case. Some tools can synchronize text and graphics (e.g.
SecureUML, which has an access policy DSL, and uses a graphical interface to
generate this text.)

www.manaraa.com

 Critical Systems Development Using Modeling Languages 31

• Development Traceability. There must be a link between requirements and
verification and changes made to models based on analysis results; the issue is that
the traces have to be well defined and well understood.

• The results of case studies are problematic. They often do not produce any really
new insights, or learnings that can be easily applied in other situations. It would
be a good research topic to define how to go about performing a “perfect” case
study – planning, what you want to find out, how to find it out, common problems,
etc. The end result would be a template for running a case study that could be used
by people setting up case studies, and people evaluating papers written about case
studies, or evaluating the results of the case study, etc.

www.manaraa.com

Modeling an Electronic Throttle Controller Using the
Timed Abstract State Machine Language and Toolset

Martin Ouimet, Guillaume Berteau, and Kristina Lundqvist

Embedded Systems Laboratory
Massachusetts Institute of Technology

Cambridge, MA, 02139, USA
{mouimet, gberteau, kristina}@mit.edu

Abstract. In this paper, we present an integrated toolset that implements the
features of the Timed Abstract State Machine (TASM) language, a novel specifi-
cation language for embedded real-time systems. The toolset enables the creation
of executable specifications with well-defined execution semantics, abstraction
mechanisms, and composition semantics. The features of the toolset are demon-
strated using an Electronic Throttle Controller (ETC) from a major automotive
vendor. The TASM toolset is used to analyze the resource consumption resulting
from the mode switching logic of the ETC, and to verify the completeness and
consistency of the specification.

Keywords: Formal Specification, Modeling, Simulation, Real-Time Systems,
Embedded Systems.

1 Introduction

In the design and development of embedded real-time systems, the design and spec-
ification problem is more challenging than for traditional interactive systems because
both functional behavior and non-functional behavior are part of the system’s utility and
must be specified precisely and concisely [5]. Furthermore, the specification and analy-
sis of system designs is often performed at various levels of abstraction [13]. The Timed
Abstract State Machine (TASM) language was introduced in [17], as a novel specifica-
tion language that removes the need to use many other specification languages. More
specifically, TASM incorporates the specification of functional and non-functional be-
havior into a unified formalism. TASM is based on the theory of Abstract State Machines
(ASM), a method for system design that can be applied at various levels of
abstraction [3].

The TASM toolset implements the features of the TASM language through three
main components - the editor, the analyzer, and the simulator. Those three components
play a key role in gaining insight into the system under design during the early stages
of development, and throughout the implementation of the system. The TASM toolset
is well-suited to model and analyze the types of embedded real-time systems which are
typically found in the automotive and aerospace industries.

In the automotive industry, many high-end car manufacturers use sophisticated elec-
tronics as an important sale point. For example, ”drive-by-wire” systems [14] are be-
coming more commonplace in high end models. Drive-by-wire systems are composed

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 32–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Modeling an Electronic Throttle Controller 33

of microcontroller units, sensors, and actuators to replace the direct physical linkage
between the driver and the controlled elements.

In this paper, we present the TASM language and introduce the associated toolset by
modeling a subset of a modern drive-by-wire system. More specifically, we focus on a
fault tolerant electronic throttle controller (ETC) which is used at a major automotive
company. The ETC allows the transfer function between the acceleration pedal and the
throttle to be dynamically adjusted, according to various parameters, to optimize fuel
consumption. The ETC is an industrial application that is well-suited for specification
and analysis in the TASM language because it is safety-critical, it is embedded, it has
hard timing constraints, and it contains concurrency.

This paper is divided into five sections in addition to this Introduction. The following
section presents related work. The TASM language is presented in Section 3. Section 4
introduces the TASM toolset and its features. Section 5 describes the ETC model and
details the analysis that has been performed on the model using the TASM toolset. Fi-
nally, the Conclusion and Future Work section, Section 6, summarizes the contributions
of the paper and explains the additions that are to come in future development.

2 Related Work

In the finite state system family, model checkers have grown in popularity because of
their automated analysis capabilities. The Uppaal [18] model checker has enjoyed pop-
ularity in the real-time system community. However, the formalism of Uppaal lacks
structuring mechanisms and makes abstraction and encapsulation difficult to achieve
[2]. Statecharts and the associated tool STATEMATE [10] augment automata with struc-
turing mechanisms (superstates).

In the petri net family, a large number of variations on the traditional petri net model
have been developed, including various models of time [6]. Non-determinism is an
essential part of petri nets, which makes petri net unsuitable for the specification of
safety-critical real-time systems [2]. Other popular languages include the Synchronous
languages ESTEREL and LUSTRE [2], implemented in the SCADE tool suite. Those
languages only apply to the specification of synchronous systems.

In the industrial community, especially in the aerospace and automotive industries,
the Unified Modeling Language (UML) [15] and the Architecture Analysis and Design
Language (AADL) [19] have come to dominate notational conventions. UML suffers
from a lack of standardized formal semantics. AADL contains formal semantics but is
still in the early development stages, so it could not be completely evaluated.

In the Abstract State Machine (ASM) community, various tools have been developed.
The XASM language [1] and toolset extends ASMs with composition mechanisms. The
XASM language does not include time nor resource specification and does not support
concurrent ASMs. Other tools include ASM Gofer [20], the ASM Workbench [7], and
Microsoft’s AsmL [9] toolset. Aside from ASM Gofer, these tools do not support con-
current ASM specifications. Furthermore, these tools do not address time explicitly. The
specification and execution semantics of resource consumption has not been addressed
in the ASM community.

www.manaraa.com

34 M. Ouimet, G. Berteau, and K. Lundqvist

3 The Timed Abstract State Machine (TASM) Language

The TASM language was created as a language extending the ASM language to unify
the specification of functional and non-functional properties. The TASM language com-
prises the ASM language, extensions to specify non-functional properties, and compo-
sition semantics [16,17].

3.1 Basic Definitions

The ASM language revolves around the concepts of an abstract machine and an abstract
state. System behavior is specified as the computing steps of the abstract machine. A
computing step is defined as a set of parallel updates made to global state. A state is
defined as the values of all variables at a specific instant. A machine executes a step
by yielding a set of state updates, called an update set. A run, potentially infinite, is a
sequence of steps, that is, a sequence of update sets.

The term specification is used to denote the complete document that results from the
process of writing down a system design. A basic abstract state machine specification is
made up of two parts - an abstract state machine and an environment. The machine ex-
ecutes based on values in the environment and modifies values in the environment. The
environment consists of two parts - the set of environment variables and the universe of
types that variables can have. The machine consists of three parts - a set of monitored
variables, a set of controlled variables, and a set of mutually exclusive rules. The mon-
itored variables are the variables in the environment that affect the machine execution.
The controlled variables are the variables in the environment that the machine affects.
The set of rules are named predicates that express the state evolution logic by specifying
how the variables in the environment are modified. For a complete description of the
theory of abstract state machines, the reader is referred to [3].

3.2 Time

The TASM approach to time specification is to specify the duration of a rule execution.
In the TASM world, this means that each step will last a finite amount of time before an
update set is applied to the environment. At the specification level, time gets specified
for each rule. The specification of time can take the form of a single value t, or can
be specified as an interval [tmin, tmax]. The approach uses relative time between steps.
The total time for a run is simply the sum of the individual step times over the run.

3.3 Resources

The specification of non-functional properties includes timing characteristics as well as
resource consumption properties. A resource is defined as a global quantity that has a
finite size. Power, memory, and bandwidth are examples of resources.

At the specification level, each rule specifies how much of a given resource it con-
sumes, either as an interval or as a single value. The semantics of resource usage are
assumed to be volatile, that is, usage lasts only through the step duration. For example,
if a rule consumes 128 kiloBytes of memory, the total memory usage will be increased

www.manaraa.com

Modeling an Electronic Throttle Controller 35

by 128 kiloBytes during the step duration and will be decreased by 128 kiloBytes after
the update set has been applied to the environment.

The definition of an update set is extended to include the time and resource behavior
of a step, in addition to the variable updates. The symbol TRUi is used to denote the
timed update set, with resource usage, of the ith step, where ti is the step duration, RCi

is the set of consumed resources, and Ui is the update set: TRUi = (ti, RCi, Ui).

3.4 Hierarchical Composition

The composition mechanisms included in the TASM language are based on the XASM
language [1]. In the XASM language, an ASM can use other ASMs in rule declarations
in two different ways - as a sub ASM or as a function ASM. A sub ASM is a machine
that is used to structure specifications. A function ASM is a machine that takes a set
of inputs and returns a single value as output, similarly to a function in programming
languages.

The execution semantics of auxiliary machines are parallel. For a given step that uses
auxiliary machines, the duration of the step is the maximum of the durations of the steps
of auxiliary machines. The resource consumption of the step will be the summation of
individual consumptions of the steps of auxiliary machines, for each resource. The com-
bination of two update sets TRU1,i = (t1,i, RC1, U1,i) and TRU2,i = (t2,i, RC2, U2,i)
from two auxiliary machines invoked within the same step would yield a third update
set TRUi: TRUi = (max(t1,i, t2,i), RC1 + RC2, U1,i ∪ U2,i).

3.5 Parallel Composition

In the TASM language, parallel composition is achieved through the definition of multi-
ple main machines. The semantics of parallel composition regards the synchronization
of the machines with respect to the global progression of time. Machines execute one
or more steps that can last any amount of time. A machine that executes a step that
lasts longer than steps of other machines will be busy until the global progression of
time reaches the end of the step duration. In the meantime, machines that aren’t busy
can keep executing steps. This definition gives rise to update sets no longer constrained
by step number, but constrained by time. The synchronization of parallel machines is
achieved through the step durations. For a complete description of the TASM language,
the reader is referred to [16,17].

4 The Timed Abstract State Machine Toolset

The TASM toolset includes facilities for creating, editing, and composing TASM spec-
ifications through the TASM Editor. Furthermore, the toolset includes facilities for ex-
ecuting specifications through the TASM Simulator, to visualize the dynamic behavior
of the system under design. Finally, the TASM Analyzer provides automated analysis
capabilities to gain insight into the properties of the system being designed. These core
components of the TASM toolset are explained in details in the following subsections.

www.manaraa.com

36 M. Ouimet, G. Berteau, and K. Lundqvist

4.1 The TASM Editor

The TASM Editor provides the facilities to define the three types of machines in the
TASM language - main machines, function machines, and sub machines. The editor
provides basic text editing and syntax highlighting functionality. Furthermore, the editor
enables the creation of documentation into the Hyper Text Markup Language (HTML)
format. The toolset can be used to import or to export a TASM specification in a well-
documented format [16] expressed in the eXtensible Markup Language (XML) syntax.
A screenshot depicting the TASM editor is shown in Figure 1.

Fig. 1. Screenshot of the TASM Editor

4.2 The TASM Simulator

By definition, TASM specifications are executable. The execution semantics of the
TASM language have been defined in [16,17]. The TASM Simulator enables the visual-
ization of the dynamic behavior of the specification, in a step-by-step fashion. The visu-
alization of the dynamic behavior includes time dependencies between
parallel main machines, the effect of step execution on environment variables, and re-
source consumption. Resource consumption is graphed over time and statistics regard-
ing minimum, maximum, and average resource consumption are compiled. Because
time and resources can be specified using intervals, that is, using a lower bound and an
upper bound, the simulation can use different semantics for time passage and resource

www.manaraa.com

Modeling an Electronic Throttle Controller 37

consumption. For example, a given simulation can use the worst-case time
(upper bound) for all steps, to visualize the system behavior under the longest run-
ning times. Other options include best-case time, average-case time, and using a time
randomly selected within the specified interval. The same semantics can be selected for
the resource consumption behavior.

4.3 The TASM Analyzer

The TASM Analyzer is the component of the TASM toolset that performs analysis of
specifications. The analyzer can be used to verify basic properties of TASM specifica-
tions such as consistency and completeness [11]. In the TASM language, completeness
ensures that, for a given machine and for all possible combinations of its monitored
variable values, a rule will be enabled. If a specific combination of values of monitored
variables is not covered by a rule, the specification is said to be incomplete and the an-
alyzer gives a counterexample. In the TASM language, consistency ensures that, for a
given machine and for all possible combinations of monitored variable values, one and
only one rule is enabled. In other words, verifying consistency means verifying that the
rules of a given machine are mutually exclusive. Future capabilities of the analyzer will
include verifying worst-case and best-case execution times for TASM specifications,
as well as verifying best-case and worst-case resource consumption. The Future Work
section explains in more details the anticipated features of the TASM analyzer.

5 Modeling the Electronic Throttle Controller

The Electronic Throttle Controller (ETC) was initially modeled by Griffiths [8] as a
hybrid system using Mathworks’ Simulink and Stateflow. The main idea behind the
throttle controller concerns optimizing fuel efficiency by controlling the amount of air
and the amount of fuel that enter the engine. This is achieved by controlling the throttle
angle and the fuel injectors.

Griffiths’ Simulink model has two outputs – desired current and desired rate of fuel
mass (dMfc). The angle of the throttle is controlled by the amount of current fed to
the throttle servo. The desired current affects the position of the throttle and is deter-
mined based on the position of the gas pedal, vehicle speed, O2 concentration in the
exhaust, engine speed, and temperature. The other controller output is the rate of fuel
mass (dMfc). The dMfc controls how much gas is sprayed in the combustion chamber.
This value needs to be adjusted to maintain a stoichiometric combustion.

5.1 Components

We adopted the Simulink model into the TASM language by modeling the control of the
desired current and the control of the desired fuel consumption as sub machines within
a controller main machine. The specification makes use of auxiliary machines, both sub
machines and function machines. The main steps of functionality have been divided
using sub machines. For the throttle voltage calculations, under nominal operation, the
main loop invokes 3 sub machines:

SET_MAJOR_MODE(); SET_MINOR_MODE(); CALCULATE_THROTTLE_V();

www.manaraa.com

38 M. Ouimet, G. Berteau, and K. Lundqvist

Table 1. List of machines used in the ETC TASM model for throttle voltage calculation

Name Type Purpose
ETC CONTROLLER Main Main loop to calculate the throttle voltage
COMPUTE THROTTLE VOLTAGE Sub Calculates the throttle voltage
ETC THROTTLE V Sub Wrapper machine for the throttle voltage calculation
SET MAJOR MODE Sub Sets the major operating mode based on sensor values
SET MINOR MODE Sub Sets the minor operating mode based on sensor values
Cruise Function Determines whether the cruise control condition is enabled
Cruise Mode Function Sets the cruise mode
Cruise Throttle V Function Returns the cruise throttle voltage
Driving Throttle V Function Returns the driving throttle voltage
Human Throttle V Function Returns the human throttle voltage
Limiting Throttle V Function Returns the limiting throttle voltage
Over Rev Throttle V Function Returns the over revolution throttle voltage
Over Torque Throttle V Function Returns the over torque throttle voltage
Over Rev Function Determines if the over revolution condition is enabled
Over Rev Mode Function Sets the over revolution mode
Over Torque Function Determines if the over torque condition is enabled
Over Torque Mode Function Sets the over torque mode
min Function Returns the smaller value of two floats
max Function Returns the larger value of two floats

This loop executes indefinitely until a fault is detected, the ignition is turned off,
or the car gear is shifted out of the ’drive’ position. Other core rules include the fault
handling mechanisms and the rules to compute the desired fuel consumption. The cal-
culations of throttle voltage and desired fuel mass are directly based on the mode of op-
eration. Appropriate datatypes were defined to list the possible major and minor modes:

Binary_Mode := {active, inactive};
Binary_Status := {on, off};
Health_Status := {nominal, fault_detected};
Mode := {start-up, shut-down, driving, limiting};

The Mode datatype is used to set the major mode of operation. The Binary Mode
datatype is used to set the cruise, limiting, over revolution, and over torque minor
modes.

5.2 Resources

The resources that are modeled in this example are power, to estimate the maximum
power consumption of the throttle controller, and memory, to ensure that the memory
used by the controller is adequately bounded. We make the assumption that the amount
of memory available for the throttle controller is 512 kiloBytes. For power consumption,
there is typically no upper bound, so we choose a large value, 1 Mega Watt.

The characteristics of the power utilization were estimated using the characteristics
of the Xilinx Virtex II Pro implementation platform. This implementation platform was
selected because it has been used in past research [4].

5.3 Complete Model and Simulation

The total list of machines used for the throttle voltage calculation is given in Table 1.
For the rate of fuel mass calculation, a similar list of machines was used. This list is

www.manaraa.com

Modeling an Electronic Throttle Controller 39

omitted here for brevity. The total model contains 29 machines (4 main machines, 8
sub machines, and 17 function machines). There are 21 environment variables, 4 user-
defined types, and 2 resources. The complete model amounts to about 750 lines of
TASM constructs.

5.4 Scenario Modeling

The electronic throttle controller reacts to changes in the state of the vehicle (speed,
traction, altitude, failures, etc.) and operator inputs (gas pedal angle, break pedal angle,
cruise control switch, ignition, gear, etc.). Various scenarios were devised to exercise
the dynamic behavior of the throttle controller. The basic scenarios involved selecting a
set of initial conditions that were not modified outside of the controller’s behavior. The
basic scenarios are useful in ensuring that the ETC behaves as expected for isolated con-
ditions. More interesting scenarios were created by modeling driver behavior and plant
behavior. Both the driver and the vehicle were modeled as main machines, composed
in parallel with the controller machines. The driver and vehicle models enable the cre-
ation of more complex scenarios where the driver and vehicle can generate changes at
prespecified times. The combination of driver and vehicle models injects dynamic state
changes, and the controller behavior can be observed in response to these state changes.

5.5 Results

Creating a formal model of the ETC enabled the verification of consistency and
completeness for the mode switching logic and throttle voltage calculation logic.

Fig. 2. Resource graph

www.manaraa.com

40 M. Ouimet, G. Berteau, and K. Lundqvist

Determining these properties was helpful during the early modeling stages to ensure
that no cases were missed and that no cases were conflicting. This verification was
established in isolation, by verifying completeness and consistency on a machine-by-
machine basis. The ETC model was not overly complex and presented a good entry-
level example to exercise the TASM toolset and to show the capabilities of the toolset.
On the simulation side, the TASM toolset enables the creation of multiple simulation
scenarios, using different initial conditions. Each scenario exercises the model in dif-
ferent ways and the toolset allows the visualization of resource consumption behavior
over time. The TASM simulator presents graphical representation of timing behavior
for main machines and of resource consumption behavior for all resources in the system
design. Furthermore, it is also possible to visualize the state evolution of the environ-
ment and the internal state of the main machines. A sample graph depicting resource
consumption for a sample run is shown in Figure 2. The top graph shows the mem-
ory consumption and the bottom graph shows the power consumption during a time
interval.

Ten different scenarios were run for the ETC model, using the same set of com-
ponents, but using different initial conditions. The results for scenarios which yielded
different results are listed in Table 2. Throughout the scenarios, the maximum mem-
ory consumption was found to be 256 kiloBytes and the maximum power consumption
peaked at 5 Watts. In certain scenarios, the system oscillated and reached a fix point
after a number of states.

Table 2. List of Simulation Scenarios for the ETC model

Scenario Fix Point Peak Memory Peak Power

1 13 steps 206 kBytes 3 Watts
4 10 steps 256 kBytes 4 Watts
5 6 steps 196 kBytes 3 Watts
9 11 steps 226 kBytes 5 Watts

6 Conclusion and Future Work

In this paper, we have introduced the TASM toolset. The capabilities of the toolset were
demonstrated using an industrial example, an electronic throttle controller. The TASM
toolset was used to model the mode switching logic, voltage calculation logic, and
desired mass fuel rate calculation of the throttle controller. The preliminary results of
the simulation show that the memory consumption peaked at 256 kBytes and the power
consumption peaked at 5 Watts. The modeling of the throttle controller was helpful to
verify consistency and completeness of the logic and to gain insight into the resource
behavior. Future work will build upon this preliminary example and will incorporate
more functionality into the toolset.

In its current state, the TASM toolset has ample facilities for editing and simulation.
However, the TASM toolset could use more functionality on the verification side. In fu-
ture versions of the toolset, we will enhance the analysis capabilities by mapping TASM
specifications to Uppaal [18]. The aim is to be able to verify best-case and worst-case

www.manaraa.com

Modeling an Electronic Throttle Controller 41

execution times between two states of a TASM specification. Furthermore, by using
Uppaal, we will be able to verify the absence of deadlocks, and to verify the best-case
and worst-case resource consumption behavior.

References

1. Anlauff M.: XASM - An Extensible, Component-Based Abstract State Machines Language.
ASM 2000, International Workshop on Abstract State Machines (2000)

2. Berry G.: The Essence of ESTEREL. Proof, Language and Interaction: Essays in Honour of
Robin Milner. MIT Press (2000)

3. Börger E., Stärk R.: Abstract State Machines. Springer-Verlag (2003)
4. Boussemart Y., Gorelov S., Ouimet M., Lundqvist, K.: Non-Intrusive System-Level Fault

Tolerance for an Electronic Throttle Controller. Proceedings of the International Conference
on Systems (ICONS 2006). IEEE Computer Society Press (2006)

5. Bouyssounouse B., Sifakis J.: Embedded Systems Design: The ARTIST Roadmap for Re-
search and Development. Springer-Verlag (2005)

6. Cerone A., Maggiolo-Schettini A.: Time-based Expressivity of Time Petri Nets for System
Specification. Theoretical Computer Science 216. Springer-Verlag (1999)

7. Del Castillo, G.: Towards Comprehensive Tool Support for Abstract State Machines: The
ASM Workbench Tool Environment and Architecture. Applied Formal Methocs – FM-
Trends 98. LNCS 1641 Springer-Verlag (1999)

8. Griffiths P.G.: Embedded Software Control Design for an Electronic Throttle Body. Master’s
Thesis, University of California, Berkeley (2002)

9. Gurevich Y., Rossman B., Schulte W.: Semantic Essence of AsmL. Theoretical Computer
Science 3 (2005)

10. Harel D., Naamad A.: The STATEMATE Semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology 4 (1996)

11. Heitmeyer C.L. Jeffords R.D., Labaw B.G.: Automated Consistency Checking of Require-
ments Specifications. ACM Trans. on Soft. Eng. and Methodology (TOSEM) 5 (1996)

12. Hessel A., Pettersson P.: A Test Case Generation Algorithm for Real-Time Systems. Pro-
ceedings of the Fourth International Conference on Quality Software (QSIC’04) (2004)

13. Jantsch A., Sander I.: Models of Computation and Languages for Embedded System Design.
IEE Proceedings - Computers and Digital Techniques. 152 (2005)

14. Milam W., Chutinan A.: Model Composition and Analysis Challenge Problems. Smart Vehi-
cle Challenge Problems (2005)

15. Object Management Group, Inc.: Unified Modeling Language: Superstrucure. Version 2.0.
OMG Specification (2005)

16. Ouimet M.: The TASM Language Reference Manual, Version 1.0. Available from
http://esl.mit.edu/tasm (2006)

17. Ouimet M., Lundqvist K.: Timed Abstract State Machines: An Executable Specification Lan-
guage for Reactive Real-Time Systems. Technical Report ESL-TIK-000193, Embedded Sys-
tems Laboratory, Massachusetts Institute of Technology (2006)

18. Pettersson P., Larsen K.G.: Uppaal2k. Bulletin of the European Association for Theoretical
Computer Science 70 (2000)

19. SAE Aerospace: Architecture Analysis & Design Language Standard. SAE Publication
AS506 (2004)

20. Schmid J.: Executing ASM Specifications with AsmGofer. Technical Report. Available from
http://www.tydo.de/AsmGofer (1999)

www.manaraa.com

Model Checking of UML 2.0 Interactions

Alexander Knapp1 and Jochen Wuttke2

1 Ludwig-Maximilians-Universität München, Germany
knapp@pst.ifi.lmu.de

2 Università della Svizzera Italiana, Lugano, Switzerland
wuttkej@lu.unisi.ch

Abstract. The UML 2.0 integrates a dialect of High-Level Message Sequence
Charts (HMSCs) for interaction modelling. We describe a translation of UML 2.0
interactions into automata for model checking whether an interaction can be sat-
isfied by a given set of message exchanging UML state machines. The translation
supports basic interactions, state invariants, strict and weak sequencing, alterna-
tives, ignores, and loops as well as forbidden interaction fragments. The transla-
tion is integrated into the UML model checking tool HUGO/RT.

Keywords: Scenarios, UML 2.0 interactions, model checking.

1 Introduction

Scenario-based development uses descriptions of operational sequences to define the
requirements of software systems, laying down required, allowed, or forbidden be-
haviours. In version 2.0 [1] of the “Unified Modeling Language” (UML) a variation
of High-Level Message Sequence Charts (HMSCs [2]) replaced the rather inexpressive
notion of interactions in UML 1.x for describing scenarios. The scenario language of
UML 2.0 not only contains the well-known HMSC notions of weak sequencing, loops,
and alternative composition of scenarios, but also includes a peculiar negation operator
for distinguishing between allowed and forbidden behaviour. The thus gained expres-
siveness would make UML 2.0 an acceptable choice to model high-quality and safety-
critical systems using scenario-based techniques. However, several vaguenesses in the
specification document have led to several, differing efforts for equipping UML 2.0
interactions with a formal semantics (see, e.g., [3,4]).

We propose a translation of UML 2.0 interactions into automata. This synthesised
operational behaviour description can be used to verify that a proposed design meets
the requirements stated in the scenarios by using model checking. On the one hand,
the translation comprises basic interactions of partially ordered event occurrences, state
invariants, the interaction combination operators for weak and strict sequencing, paral-
lel and alternative composition, as well as a restricted form of loops, which can have
potentially or mandatorily infinitely many iterations. On the other hand, besides these
uncontroversial standard constructs, we also handle a classical negation operator [3],
which avoids the introduction of three-valued logics as suggested by the UML 2.0 spec-
ification by resorting to binary logic.

The translation procedure is integrated into our freely available UML model check-
ing tool HUGO/RT [5]: A system of message exchanging UML state machines together

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 42–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Model Checking of UML 2.0 Interactions 43

with the generated automaton representing a UML interaction for observing message
traces is translated into the input language of an off-the-shelf model checker, which then
is called upon to check satisfiability. Currently, we support interaction model checking
over state machines with SPIN [6] and, partially, with UPPAAL [7].

The remainder of this paper is structured as follows: In Sect. 2 we briefly review
the features of UML 2.0 interactions. In Sect. 3 we introduce our automaton model for
interactions, and in Sect. 4 we describe the translation from UML 2.0 interactions into
automata. Section 5 reports on the results of applying SPIN model checking with our
approach. In Sect. 6 we discuss related work, and Sect. 7 concludes with a summary of
the results and an outlook on future work.

2 UML 2.0 Interactions

obj1 obj2

b

[else]

sd

a[x > 0]

c

b

alt

not

x < 0

Fig. 1. Sample interaction

UML 2.0 interactions consist of interaction fragments.
The primitive fragments are occurrence specifications,
specifying the occurrence of events within an ob-
ject that is participating in the interaction. Com-
bined fragments aggregate occurrence specifications
into bigger interaction fragments. A combined frag-
ment comprises an operator, defining the meaning of
the particular fragment, and one or more operands.
The operands are interaction fragments themselves,
and can be guarded by an optional condition, limit-
ing the possibilities for when this operand may be
executed.

The example in Fig. 1 shows instances of the impor-
tant aspects of a UML 2.0 interaction. The behaviour of two objects obj1 and obj2 is
specified by message exchanges (sending and receiving occurrence specifications, de-
noted by arrow tails and heads) on their lifelines, object destruction (cross), state invari-
ants (conditions in a rounded box), and combined fragments. Vertical juxtaposition of
interaction fragments implies weak sequencing, such that in the second operand of the
alternative the sending of c, active on obj1, comes before any event on obj1 inside the
not fragment, and the receiving of c before any event on obj2. Both operands to alt are
guarded by conditions, which determine which operands can be chosen at “runtime”.

The primitive interaction fragments we consider are basic interactions, consisting of
a set of event occurrences with a partial order [1, p. 410], and state invariants for a single
or several lifelines that has to hold if the state invariant is reached. Of the interaction
operators [1, p. 410–412], we consider weak (seq) and strict sequential composition,
parallel composition (par), alternative (alt), weak and strict sequencing loop, ignore of
messages not mentioned, and a binary negation (not).

3 Interaction Automata

We interpret a UML 2.0 interaction as an observer of the message exchanges and state
changes in a system. Whenever the system under observation sends or receives a mes-

www.manaraa.com

44 A. Knapp and J. Wuttke

sage or one of its objects terminates successfully, the observer is notified and can act
accordingly by making a move accepting the event or by producing a failure. However,
it may also refrain from doing so, if it does not deem the state change relevant. Tak-
ing such an observer to be an automaton accepting words of system changes, i.e. state
changes or events, the acceptance conditions for finite and infinite runs can be rendered
as the corresponding ones in finite state machines and Büchi automata [8].

Interaction automata, realising such an observer from an interaction by a state-
transition system, are defined over an interaction alphabet (L, E, Σ) of a finite set
of involved lifelines L, a set E of termination, send and receive events from messages
exchanged between the lifelines, and a set Σ of system states. The transitions outgoing
from a state define a set of events that, when occurring, enable the transition. Moreover,
transitions may be guarded by conditions arising from the conditions in the interac-
tion. In order to reflect weak sequencing of interactions, the events η and the guard g
of a transition show a set of lifelines lifelines(η, g), which are active when making a
move by this transition. Finally, an interaction automaton may also use and manipulate
a set of counters V that allow to record how often lifelines in loops have executed. For
the guards we assume a propositionally closed language GΣ,V ; it should be expressive
enough to capture system state queries on Σ and to compare counters in V . For the
actions, we similarly assume a language AV manipulating the set of counters V .

A run of an interaction automaton N starts from an initial configuration (i, υ0) where
i is N ’s initial state and υ0 the valuation of the set of counters V to zero. A run of N

proceeds by steps (s, υ)
(σ,ζ)−−−→ (s′, υ′) with a system state σ ∈ Σ and a set of events

ζ ⊆ E, if there is a transition outgoing from s with a set of events equal to ζ such that in
σ and υ the transition guard is satisfied and the valuation υ is updated to υ′ according to
the transition’s action. N accepts a finite run, if this run reaches a state in the accepting
states A of N , and it accepts an infinite run if this run reaches one of N ’s recurrence
states R infinitely often.

It may be noted that although we define interaction automata to be finitely repre-
sented, the configuration space may be infinite due to unbounded increases of counters.
However, for bounded interactions, in which no lifeline in a loop is allowed to proceed
arbitrarily in advance with respect to another lifeline in the loop [9], the configuration
space can be kept finite, and even for unbounded interactions, the system under obser-
vation may not produce runs that exhibit unbounded differences between counters.

4 Translation of UML 2.0 Interactions

We translate UML 2.0 interactions into interaction automata following the generally
agreed upon semantics of basic interactions, state invariants, and the interaction oper-
ators seq, strict, par, alt, ignore, and, in a restricted form, loop [3,4]. Furthermore, we
handle a binary logic not operator; not and loop are restricted to basic interactions.1

In contrast to other approaches (e.g. [10,11]) we propose not to generate one au-
tomaton for every object in an interaction, but to use only a single observing interaction

1 For a more detailed account of the translation procedure we refer the reader to the unabridged
version of this article in the proceedings of the workshop “Critical Systems Development
Using Modeling Languages” 2006.

www.manaraa.com

Model Checking of UML 2.0 Interactions 45

automaton for the entire interaction. This single automaton represents the property to be
checked by a model checker. Our translation of basic interactions is a simplified version
of the construction for Live Sequence Charts (LSCs) given by Brill et al. [12], the han-
dling of weak sequencing cuts down techniques of Alur and Yannakakis for bounded
MSCs [9].

4.1 Basic Interactions, Loops, and Negation

We first describe the translation of basic interactions, and loops and negations of basic
interactions. These interaction fragments form the primitive blocks in our translation
procedure and have to be represented as interaction automata directly.

Basic Interactions. The translation of basic interactions is performed by unwinding the
partial order of events. For each event the partial order defines the prerequisite events,
which must be unwound before that event can be unwound. The unwinding is performed
in phases [12]. In every phase there exists a history, i.e., a set of events which have been
unwound already. Given a phase, the function ready delivers the events which can be
unwound in the next step, as inscriptions of transitions; we write isAccepting(phase)
for ready(phase) = ∅. A function nextPhase, given a phase and a transition inscription,
creates a new phase recording the additional event from the transition inscription in the
history. The following algorithm unwind transforms phases directly into states of an
interaction automaton result. Started for a basic interaction with the phase with empty
history, the state returned by this call to unwind becomes the initial state of result.

1 unwind(phase, result) ≡
2 state ← addState(result)
3 if isAccepting(phase) then addAcceptingState(result, state) fi

sd
obj2obj1

a

b

(a) Basic interaction.

obj1 obj2

a

sd

par

b

(b) par fragment.

s_6

s_4

rcv(a)

s_3

snd(b)

s_5

rcv(b)

s_2

snd(b) rcv(a)

s_1

snd(a)

(c) Automaton generated for 2(a).

s_15

s_13

snd(a)

s_11

rcv(a)

s_8

s_12

snd(b)

s_9

rcv(a)

rcv(b)

s_10

rcv(a)snd(b)

s_14

rcv(b)snd(a)

rcv(b)

s_7

snd(a) snd(b)

(d) Automaton generated for 2(b).

Fig. 2. Automata for a basic interaction and par (accepting states are doubly outlined)

www.manaraa.com

46 A. Knapp and J. Wuttke

4 for label ∈ ready(phase) do
5 addTransition(result, state, label, unwind(nextPhase(phase, label), result))
6 od
7 return state

Figure 2(a) shows an example of a basic interaction, the interaction automaton in
Fig. 2(b) shows the effects of unwinding its partial order. The branching in s_2 is due
to the fact that the second event can be either the reception of a or the sending of b.

Loops. The UML 2.0 defines loops which have a lower and an upper bound for the
number of iterations their operand has to perform; the lower bound has to be finite,
while the upper bound may be infinity. We change this and also allow the lower bound
to be infinity. However, we restrict loops to contain only a basic interaction.

For finite or infinite loops of a basic interaction the basic unwinding algorithm can
be reused. As weak sequencing is used for loops, the lifelines in the underlying basic
interaction can make different progress. Thus the history stored in a phase for a basic
interaction becomes insufficient for loops, as not all prerequisite events for a given event
will be present in the history if the lifeline’s event is lagging behind the lifeline of one
of its prerequisites. Thus we let loop phases also show a history, but the computation
of the next events from a loop phase is changed: We introduce counters for recording
the separate progress of each lifeline. Then, an event e on lifeline l is possible in a loop
phase if the following condition is met: If e has a prerequisite e′ on a lifeline l′, either
the counter for l′ is greater than the counter for l, or the counters for l and l′ are equal
and e′ is present in the history. Upon finishing a cycle through a lifeline the counter for
this lifeline has to be increased in order to make real progress.

It remains to ensure that the number of iterations of the loops indeed is between
its lower and upper bound. If the lower bound is finite, a phase becomes accepting if
the counters for all lifelines are equal and greater than or equal to the lower bound. If
the upper bound is finite a new cycle of a lifeline may only be started, if the counter
of the lifeline has not reached the upper bound. Finally, if either the lower or the upper
bound of iterations is infinite, we have to introduce a recurrent state which is run through
every time the lifeline counters are equal. The introduction of a recurrent phase extends
the unwind algorithm after line 3 by

if isRecurrent(phase) then addRecurrentState(result, state) fi

Figure 3 shows an example of an automaton for a loop. The example is based on the
basic interaction in Fig. 2(a), wrapped into a loop 〈4,∞〉.
Negation. We replace UML 2.0’s notorious negation operator neg by a binary logic
variant not which simply accepts all those traces that are not valid for its operand. How-
ever, an algorithm for negating general interaction automata is out of reach. Thus we
restrict the application of not to basic interactions, such that the interaction automaton
to be negated is deterministic and does not involve counters. The negation operation
on these interaction automata basically means that all accepting states become non-
accepting states and all non-accepting states become accepting states in the negated
automaton. A new recurrent state is added, and from all complemented states transi-
tions to this accepting state are added to accept all events that were not accepted in the

www.manaraa.com

Model Checking of UML 2.0 Interactions 47

s_6

s_4

rcv(b) [((v_1 < v_2) && (v_1 < v_2))
&&(((v_1+1) == v_2) && ((v_1+1) >= 4))]

/v_1++;

s_1

rcv(b)
[((v_1 < v_2) && (v_1 < v_2))

&& (((v_1+1) != v_2) ||
 ((v_1+1) < 4))]/v_1++;

s_5

snd(a)

s_3

snd(b) [((v_2+1) == v_1) &&
((v_2+1) >= 4)]/v_2++;

snd(b) [((v_2+1) != v_1) ||
((v_2+1) < 4)]/v_2++;

rcv(a) [(v_1 < v_2) || (v_1 == v_2)]

/v_1 = 4; v_2 = 4;

s_2

rcv(a)
 [v_1 < v_2]

snd(a)
[(v_1 >= 4) && (v_2 >= 4)]

/v_1 = 0; v_2 = 0;

snd(b)
/v_2++;

rcv(b)[((v_1 < v_2) ||(v_1 == v_2))
&&(v_1 < v_2)]/v_1++;

Fig. 3. The automaton for an infinite loop (recurrence states are triply outlined; transition annota-
tions abbreviated)

corresponding state of the original automaton. This additional accepting state is also
equipped with a self-loop accepting all possible events.

4.2 Interleaving, Sequencing, and Composition

We next describe the parallel (par) and weak sequential (seq) composition of two in-
teraction automata N1 and N2 over a common interaction alphabet (L, E, Σ). We also
give a brief account of strict sequential (strict) composition, extending this notion to
introduce a general strict sequencing variant sloop of loops, and of alternatives (alt),
ignore, and state invariants.

Parallel Composition and Weak Sequencing. The parallel composition N1‖N2, accept-
ing the trace o0o1 · · · ∈ (Σ×℘E)∗∪(Σ×℘E)∞ by interleaving traces o

(1)
0 o

(1)
1 . . . and

o
(2)
0 o

(2)
1 . . . accepted by N1 and N2 respectively, uses a construction very similar to the

parallel composition of Büchi automata [8]. This construction only has to be adapted
to cover the case that both or one of the interaction automata do not show recurrence
states.

A slight modification of the construction for parallel composition can be used for
obtaining the weak sequential composition N1 ;<> N2 of N1 and N2: Also interleavings

of traces o
(1)
0 o

(1)
1 . . . and o

(2)
0 o

(2)
1 . . . accepted by N1 and N2 are accepted by N1 ;<> N2,

but in the interleaving no o
(2)
j is allowed to occur before an o

(1)
k if their active lifelines

overlap. Therefore, the states of N1 ;<> N2 show an additional component of sets of
lifelines, recording which lifelines have been covered by the interleaving of N2.

www.manaraa.com

48 A. Knapp and J. Wuttke

Formally, given the interaction automata N1 = (S1, V1, T1, i1, A1, R1) and N2 =
(S2, V2, T2, i2, A2, R2), their weak sequential composition N1 ;<> N2 is the interaction
automaton (S, V1 ∪ V2, T, i, A, R) with

S = S1 × ℘L × S2 × {0, 1, 2}, i = (i1, ∅, i2, 0)
(s1, K, s2, k) ∈ A ⇐⇒ (s1 ∈ A1 ∧ s2 ∈ A2 ∧ k = 0)
(s1, K, s2, k) ∈ R ⇐⇒ k = 2
((s1, K, s2, k), (η, g, a), (s′1, K

′, s′2, k
′)) ∈ T ⇐⇒

(((s1, (η, g, a), s′1) ∈ T1 ∧ s′2 = s2 ∧ K = K ′ ∧ lifelines(η, g) ∩ K = ∅) ∨
((s2, (η, g, a), s′2) ∈ T2 ∧ s′1 = s1 ∧ K ′ = K ∪ lifelines(η, g))) ∧

k′ =

⎧
⎪⎨

⎪⎩

k + 1, if (k = 0 ∨ k = 1) ∧
(s′k+1 ∈ Rk+1 ∨ (s′k+1 ∈ Ak+1 ∧ R1−k �= ∅))

k mod 2, otherwise

The results of applying the construction for parallel composition and weak sequenc-
ing (using an optimised algorithm cutting off states that are unreachable from the initial
state) to the interaction in Fig. 2(b) and Fig. 2(a) respectively, are shown in Fig. 2(d)
and Fig. 2(c) and show the unrestricted interleaving in comparison with the restricted
interleaving of weak sequencing.

Strict Sequencing, Alternatives, and Ignores. The strict sequential composition N1 ; N2

is achieved by building an automaton which appends N2 at every accepting state of
N1. The simplicity of the strict sequencing construction for interaction automata also
allows for the introduction of an unrestricted loop operator sloop, which enforces strict
sequencing of the operand.

In alternative fragments all operands are guarded by either an explicitly given con-
dition, or the implied condition [true]. We integrate the operand automata into a single
automaton with guarded transitions from a new initial state to their respective initial
states. A similar construction is employed for state invariants.

An ignore fragment specifies which messages are allowed to occur additionally in
the traces generated from its operand. This is captured by adding self-loops to every
state with the send and receive events from these messages, active for every possible
sender or receiver, to the interaction automaton of the operand.

5 Model Checking UML 2.0 Interactions

We apply interactions as observers in model checking by translating the generated inter-
action automata into observing processes in the model checker SPIN. The system to be
observed are message exchanging UML state machines. SPIN is called upon to check
whether there is a run of the UML state machines that is accepted by the observer in-
teraction automaton. The translation of UML state machines into SPIN, the translation
from UML 2.0 interactions into interaction automata, and the translation of interaction
automata into SPIN are integrated into the UML model checking tool HUGO/RT [5].

www.manaraa.com

Model Checking of UML 2.0 Interactions 49

sd
: ATM : Bank

ignore { verifyPIN, reenterPIN,
abort, done }

inState(GivingMoney)

(a) PIN must have been verified

sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

(b) Always give money to validated customers

Fig. 4. Two examples for the ATM case study

Implementation. We use SPIN’s accept labels to capture the acceptance conditions of in-
teraction automata both for finite and infinite traces. For infinite traces the accept labels
are generated from the recurrent states, for finite traces a special accept label with loop-
ing transitions is produced from the acceptance states. The counters of an interaction
automaton are represented as variables of the observing process. For recording events
the system is instrumented to communicate with the observer via rendezvous channels:
Each time a message is sent or received, or a state machine terminates successfully the
observer is notified.

In order to keep the size of the SPIN code produced small state sharing is used in the
algorithms for basic interactions and loops. Additionally, in the automata from parallel
composition and weak sequencing unreachable states are cut off. These optimisations
are done on the fly without constructing the product automaton. What is more, the
unwind algorithm produces rather large automata, even with sharing: In the worst case
for n independent events the resulting number of states will be 2n. Thus it is beneficial
to encode a phase not into the states of an interaction automaton, but to employ an
external bit-array which encodes the progress of the phases and to use tests on this
bit-array for checking whether an event can be accepted.2

Verification. Some examples for an automatic teller machine (ATM) case study [14]
may show how the additions to interactions in UML 2.0 add to the expressiveness,
and thus to the ease of specification and verification of interesting system properties.
The two examples in Fig. 4 encode two important properties of the interaction between
the system’s components ATM and Bank: Figure 4(a) specifies a forbidden scenario;
the state invariant that money is dispensed should not be reachable if no PINVerified
(all other messages are ignored) has been sent. The interaction in Fig. 4(b) is a required
scenario; it must be possible to take money from the ATM infinitely often, as long as
the card is valid.

Having specified the interactions and state machines for the system components
(see [14]) in the input language of HUGO/RT, the verification process itself is fairly
straightforward. HUGO/RT translates the model into a set of SPIN processes and calls
SPIN for finding acceptance cycles. For the interaction in Fig. 4(a) no such cycle is
found, verifying that the interaction is indeed not satisfiable. For the interaction in

2 For example, the error scenario in Fig. 15-9 of the telecom case study of Baranov et al. [13]
with 19 messages on 5 lifelines amounts to 207 states and 476 transitions in the phase-based
translation, but only 2 states and 39 transitions using a bit-array.

www.manaraa.com

50 A. Knapp and J. Wuttke

Fig. 4(b) an acceptance cycle is found showing that the infinite behaviour is possible.
SPIN also produces an example trail, which is retranslated into a human-readable format
of UML system states. For these simple examples the translation and model checking
take about three seconds on an Intel R© Pentium R© 4, 3.2 GHz with 2 GB of memory.

6 Related Work

Over time there have been various approaches to formalising scenario descriptions in
order to facilitate the analysis of requirements or specifications. Starting from MSCs,
Uchitel et al. [15,11] specified semantics for HMSCs, and then developed an approach
to synthesise behavioural models in the form of labelled transition systems. Their ap-
proach aims at preserving the component structure of the system. This causes their
models to allow additional behaviours, which are not explicitly specified in the scenar-
ios, and requires refinement steps to complete the specification [11].

Damm and Harel [16] developed LSCs as a more expressive extension of MSCs.
They enrich their specification language with means to express preconditions for scenar-
ios, and facilities to explicitly specify mandatory and forbidden behaviour. Klose [17]
proposes an automaton-based interpretation of LSCs and gives an algorithm to create
automata out of basic LSCs [17,12]. Bontemps and Heymans [18] formalise automata
constructions for strict sequencing, parallel composition, and finite iteration of LSCs.
Harel and Maoz [19] propose to port the semantics of LSCs to UML 2.0.

With CHARMY, Autili et al. [20] present a tool based on an approach similar to ours.
The focus of CHARMY are architectural descriptions and the verification of their consis-
tency. The semantics of interactions, given by their translation rules, however, deviates
substantially from what can be gleaned from the UML 2.0 specification. Furthermore,
in the program version we tested, combined fragments are not supported.

7 Conclusions and Future Work

We have presented a translation from UML 2.0 interactions into a special class of
automata showing features of finite state automata, Büchi automata and counter au-
tomata. These interaction automata have been further translated into concrete programs
for model checkers. Together with matching descriptions for UML state machines the
approach has been used to model check consistency between the different system de-
scriptions. In some examples we have shown the applicability of the translation pro-
cedures to check the satisfiability of scenarios by using the model checker SPIN. The
added expressiveness allows the use of our approach to specify properties which before
would have required formalisms other than UML interactions.

Since in the current implementation loop and not are restricted in terms of operands,
one direction of future work will be to detail to which extent these restrictions can be
removed. We also intend to integrate the remaining operators specified by the UML 2.0
specification, which we have disregarded so far. Furthermore, the specification patterns
for scenarios described by Autili et al. [20] should be combined with our approach.
Finally, we plan to integrate timing constraints and to enhance the translation of inter-
actions into the real-time model checker UPPAAL.

www.manaraa.com

Model Checking of UML 2.0 Interactions 51

References

1. Object Management Group: Unified Modeling Language: Superstructure, version 2.0. (2005)
http://www.omg.org/cgi-bin/doc?formal/05-07-04(06/07/18).

2. International Telecommunication Union: Message Sequence Chart (MSC). ITU-T Recom-
mendation Z.120, ITU-T, Geneva (2004)

3. Cengarle, M.V., Knapp, A.: UML 2.0 Interactions: Semantics and Refinement. In Jürjens,
J., Fernandez, E.B., France, R., Rumpe, B., eds.: Proc. 3rd Int. Wsh. Critical Systems De-
velopment with UML (CSDUML’04), Technical Report TUM-I0415, Institut für Informatik,
Technische Universität München (2004) 85–99

4. Runde, R.K., Haugen, Ø., Stølen, K.: Refining UML Interactions with Underspecification
and Nondeterminism. Nordic J. Comp. 12(2) (2005) 157–188

5. Hugo/RT website: http://www.pst.ifi.lmu.de/projekte/hugo(06/07/18) (2000)
6. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2003)
7. UPPAAL website: http://www.uppaal.com(06/07/18) (1995)
8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
9. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In Baeten, J.C.M.,

Mauw, S., eds.: Proc. 10th Int. Conf. Concurrency Theory (CONCUR’99). Volume 1664 of
Lect. Notes Comp. Sci., Springer (1999) 114–129

10. Leue, S., Ladkin, P.B.: Implementing and Verifying MSC Specifications Using Prome-
la/XSpin. In Gregoire, J.C., Holzmann, G.J., Peled, D., eds.: Proc. 2nd Int. Wsh. SPIN Ver-
ification System (SPIN’96). Volume 32 of Discrete Mathematics and Theoretical Computer
Science., American Mathematical Society (1997) 65–89

11. Uchitel, S., Kramer, J., Magee, J.: Incremental Elaboration of Scenario-based Specifications
and Behavior Models using Implied Scenarios. ACM Trans. Softw. Eng. Methodol. 13(1)
(2004) 37–85

12. Brill, M., Damm, W., Klose, J., Westphal, B., Wittke, H.: Live Sequence Charts. In Ehrig,
H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E., eds.:
Integration of Software Specification Techniques for Applications in Engineering. Volume
3147 of Lect. Notes Comp. Sci., Springer (2004) 374–399

13. Baranov, S., Jervis, C., Kotlyarov, V., Letichevsky, A., Weigert, T.: Leveraging UML to
Deliver Correct Telecom Applications. In Lavagno, L., Martin, G., Selic, B., eds.: UML for
Real. Kluwer (2003) 323–342

14. Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collaborations.
In Stoller, S., Visser, W., eds.: Proc. Wsh. Software Model Checking. Volume 55(3) of Elect.
Notes Theo. Comp. Sci., Paris (2001) 13 pages.

15. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Trans. Softw. Eng. 29(2) (2003) 99–115

16. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Meth.
Sys. Design 19(1) (2001) 45–80

17. Klose, J.: Live Sequence Charts: A Graphical Formalism for the Specification of Communi-
cation Behaviour. PhD thesis, Carl von Ossietzky-Universität Oldenburg (2003)

18. Bontemps, Y., Heymans, P.: Turning High-Level Live Sequence Charts into Automata.
In: Proc. ICSE Wsh. Scenarios and State-Machines: Models, Algorithms and Tools
(SCESM’02), Orlando (2002)

19. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence
Diagrams. In: Proc. 5th Int. Wsh. Scenarios and State Machines: Models, Algorithms, and
Tools (SCESM’06), ACM Press (2006) 13–20

20. Autili, M., Inverardi, P., Pelliccione, P.: A Scenario Based Notation for Specifying Temporal
Properties. In: Proc. 5th Int. Wsh. Scenarios and State Machines: Models, Algorithms, and
Tools (SCESM’06), ACM Press (2006) 21–27

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.pst.ifi.lmu.de/projekte/hugo
http://www.uppaal.com

www.manaraa.com

3rd International Workshop on
Metamodels, Schemas, Grammars and Ontologies

Jean-Marie Favre1, Dragan Gašević2, Ralf Lämmel3,
and Andreas Winter4

1 University of Grenoble, France
www-adele.imag.fr/~jmfavre

2 Simon Fraser University, Surrey, Canada
http://www.sfu.ca/~dgasevic/

3 Microsoft Corp., Redmond, USA
http://homepages.cwi.nl/~ralf/

4 Johannes Gutenberg-Universität Mainz, Germany
http://www.gupro.de/~winter/

ateM-Workshop Series

In 2003 the ateM workshop series was established to discuss the use of Schemas
and Metaschemas in reverse engineering (ateM is Meta reverse). ateM 2003,
which was part of the 10th International Conference on Reverse Engineering
held in Victoria, Canada, already dealt with model driven approaches to sup-
port program analysis and comprehension. Since models in reverse engineering
mostly deal with documents written in certain programming or modeling lan-
guages, the extension of ateM towards grammars was a consistent step. Thus,
ateM 2004, held at the 11th International Conference on Reverse Engineering,
Delft, The Netherlands, viewed Metamodels, Schemas and Grammars. Nowadays
model driven approaches are common in software engineering and furthermore,
ontologies complement modeling technologies used today. So, the third ateM-
workshop, which was part of the 9th International Conference on Model Driven
Engineering, Languages and Systems in Genova, Italy, dealt with Metamodels,
Schemas, Grammars and Ontologies.

The objective of ateM is to bring together researchers from different commu-
nities to study and compare the use of modeling approaches residing in different
technical spaces. ateM 2006 is specifically focused on the meta technologies in a
generalized sense of discussing the use of language engineering by Metamodels,
Schemas, Grammars and Ontologies.

This view is generally consistent with model driven engineering (MDE) and
modern software reengineering. It is specifically aligned with approaches for lan-
guage engineering, grammarware engineering, domain specific language engi-
neering, software factories and others. While plain MDE tends to assume that
language descriptions are defined from scratch, ateM pays attention to the fact
that language descriptions are often buried in software components, e. g. in gram-
marware such as transformation tools, documentation generators, or front-ends.
Accordingly, it is important to better understand all means to continuously re-
cover and describe language descriptions from arbitrary software artifacts.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 52–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www-adele.imag.fr/~jmfavre
http://www.sfu.ca/~dgasevic/
http://homepages.cwi.nl/~ralf/
http://www.gupro.de/~winter/

www.manaraa.com

Metamodels, Schemas, Grammars and Ontologies (ateM 2006) 53

ateM 2006: Metamodels, Schemas, Grammars and
Ontologies

The language engineering approaches discussed at ateM 2006 addressed the
grammar-based technical space (or grammarware, cf. [3]), the model and
metamo-del-based technical spaces [1], and the ontology-based technical space
[4]. According techniques include the definition and description of progamming-
and modeling languages, the recovery of language descriptions as they are in-
grained in existing software artifacts, the reuse, integration and transformation
of language descriptions, as well as the use of language descriptions in a software
reverse engineering and evolution context.

From 30 submitted papers, nine papers were accepted to be presented in
Genova. All accepted papers showed important approaches and applications of
language engineering by various techniques and led to interesting and fruitfull
discussions during the workshop. The papers, not summarized in this proceed-
ings, include:

– Migrating a Domain-Specific Modeling Infrastructure to MDA
Technology by Duncan Doyle, Hans Geers, Bas Graaf, and Arie van
Deursen explains experiences from migrating proprietary application models
in domain specific languages (DSL) into MOF-compliant models.

– Models for the Reverse Engineering of Java/Swing Applications
by Joao Carlos Silva, Joao Saraiva, and José Creissac Campos presents a
modelbased approach to evaluate interactive applications.

– Domain specific modeling, An approach for recovering business
critical information by Carsten Bock and Detlef Zühlke presents an ap-
proach to integrate software engineering tools in a model driven tool chain.

– A metamodel independent framework for model transformation:
Towards generic model management patterns in reverse engineer-
ing by Zinovy Diskin and Jürgen Dingel presents an algebraic framework
toward model transformation based on category theory.

– A Unified Meta-Model for Concept-Based Reverse Engineering
by Florian Deissenböck and Daniel Ratiu combines technologies from meta-
modeling and ontologies to bridge legacy software artefacts to real-world
concepts.

– Foundations for Defining Software Metrics by Rüdiger Lincke and
Welf Löwe shows an generalized approach to define software metrics based
on the Dagstuhl-Middle Metamodel (DMM).

The workshop proceedings of the ACM/IEEE 9th International Conference
on Model Driven Engineering, Languages and Systems (MODELS 2006) contain
two extended versions of papers presented at the 3rd International Workshop on
Metamodels, Schemas, Grammars and Ontologies:

– Jürgen Rilling, Yonggang Zhang, Wen Jun Meng, René Witte, Volker
Haarslev, and Philippe Charland show in A Unified Ontology-Based

www.manaraa.com

54 J.-M. Favre et al.

Process Model for Software Maintenance and Comprehension how
reasoning techniques based in description logics are applied to analyse vari-
ous software artefacts.

– Miguel Garcia presents in Formalizing the well-formedness rules of
EJB3QL in UML + OCL experiences on applying class diagrams anno-
tated by OCL constraints to define a metamodel for EJB3QL.

All papers presented at ateM 2006, are published in [2]. The proceedings are on-
line available at http://planetmde.org/atem2006/atem06Proceedings.pdf.

The final discussions at ateM 2006 on the different approaches to define, anal-
yse, and use languages in software (reverse) engineering concluded that currently
the technical spaces Grammarware, (Meta-)modeling, and Ontologies are benefi-
cially applied to various areas. Only little effort has been made to compare and
combine these approaches. A general and systematic approach to defining map-
pings between grammar-based, (meta)model-based, and ontology-based techni-
cal spaces is still missing. Further reseach should investigate bridges between
these spaces to provide space-spanning modeling techniques in model-driven
engineering.

Acknowledgment

We, the organizers, thank the program committee and their coworkers who re-
viewed the submissions and provided useful feedback to the authors within a
very short period of time:

– Jean Bézivin, University of Nantes, France
– Arturo Boronat, Polytechnic University of Valencia, Spain
– Ian Bull, University of Victoria, Canada
– Massimiliano Di Penta, University of Sannio, Italy
– Stéphane Ducasse, University of Berne, Switzerland
– Harald Gall, University of Zurich, Swizerland
– Mike Godfrey, University of Waterloo, Canada
– Jeff Gray, University of Alabama at Birmingham, USA
– Reiko Heckel, University of Leicster, UK
– Jürgen Ebert, University of Koblenz-Landau, Germany
– Elisa Kendall, Sandpiper Software, USA
– Nenad Krdzavac, University of Belgrade, Serbia
– Christoph Ringelstein, University of Koblenz-Landau, Germany
– Steffen Staab, University of Koblenz-Landau, Germany
– York Sure, University of Karlsruhe, Germany
– Jean Vanderdonckt, Université Catholique de Louvain, Belgium
– Arie van Deursen, Delft University of Technology, The Netherlands
– Daniel Varro, Budapest University, Hungary
– Chris Verhoef, Vrije University Amsterdam, The Netherlands

http://planetmde.org/atem2006/atem06Proceedings.pdf

www.manaraa.com

Metamodels, Schemas, Grammars and Ontologies (ateM 2006) 55

We also thank our authors for their papers and interesting talks, and our
participants for intensive and valuable discussions. Our thanks also go to the
organizers of MODELS 2006 for accepting ateM 2006 as part of their conference
program. Furthermore, we thank our supporters, who helped in advertising and
organizing ateM 2006:

– EVOL, the Software Evolution Working Group of ERCIM (European Re-
search Consortium for Informatics and Mathematics)

– planetmde.org, the community web portal on Model Driven Engineering
– SRE, the German GI special interest group on software reengineering
– RIMEL, the French special interest group on Reverse Engineering, Mainte-

nance and Software Evolution.

References

1. J. Bézivin, On the Unification Power of Models, Software and System Modeling,
4(2), 171-188, 2005.

2. J.-M. Favre, D. Gasevic, R. Lämmel, A. Winter: 3rd Interna-
tional Workshop on Metamodels, Schemas, Grammars, and Ontolo-
gies (ateM 2006) for Reverse Engineering, Technical Report, Informatik
Bericht 1/2006, Johannes Gutenberg-Universität Mainz, October 2006
(http://www.informatik.uni-mainz.de/370.php).

3. P. Klint, R. Lämmel, C. Verhoef, Toward an engineering discipline for grammarware,
ACM Transactions on Software Engineering Methodology, 14(3), 331-380, 2005.

4. S. Staab, R. Studer, Handbook on Ontologies. Springer:Berlin, 2003.

http://www.informatik.uni-mainz.de/370.php

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 56 – 65, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Unified Ontology-Based Process Model for Software
Maintenance and Comprehension

Juergen Rilling1, Yonggang Zhang1, Wen Jun Meng1, René Witte1,
Volker Haarslev1, and Philippe Charland2

1 Department of Computer Science
and Software Engineering

Concordia University, Montreal, Canada
{rilling,yongg_zh,w_meng,rwitte,haarslev}@cse.concordia.ca

2 System of Systems Section
Defence R&D Canada Valcartier,

Val-Bélair, Canada
philippe.charland@drdc-rddc.gc.ca

Abstract. In this paper, we present a formal process model to support the com-
prehension and maintenance of software systems. The model provides a formal
ontological representation that supports the use of reasoning services across dif-
ferent knowledge resources. In the presented approach, we employ our Descrip-
tion Logic knowledge base to support the maintenance process management, as
well as detailed analyses among resources, e.g., the traceability between various
software artifacts. The resulting unified process model provides users with ac-
tive guidance in selecting and utilizing these resources that are context-sensitive
to a particular comprehension task. We illustrate both, the technical foundation
based on our existing SOUND environment, as well as the general objectives
and goals of our process model.

Keywords: Software maintenance, process modeling, ontological reasoning,
software comprehension, traceability, text mining.

1 Introduction and Motivation

Software maintenance is a multi-dimensional problem space that creates an ongoing
challenge for both the research community and tool developers. These maintenance
challenges are caused in particular by the variations and interrelationships among
software artifacts, knowledge resources, and maintenance tasks [3,20,22]. Existing
solutions [10,20] that address aspects of these challenges are commonly not integrated
with each other, due to a lack of integration standards or difficulties to share services
and/or knowledge among them. The situation is further complicated by the non-
existence of formal process models to create a representation that describes the inter-
actions and relationships among these artifacts and resources.

There has been little work in examining how these resources work together for end
users [13,20] and how they can collaboratively support a specific program maintenance
task. Maintainers are often left with no guidance on how to complete a particular task

www.manaraa.com

 A Unified Ontology-Based Process Model for Software Maintenance 57

within a given context. Our research addresses this lack of context sensitivity by
introducing a formal process model that stresses an active approach to guide software
maintainers during maintenance tasks. The process model, its basic elements and their
major inter-relations are all formally modeled by an ontology based on Description
Logic (DL) [2]. The process behavior is modeled by an interactive process metaphor.
Our approach differs from existing work on comprehension models [3], tool integra-
tion [11, 20] and task-specific process models [8,19,20] in several aspects:

1. A formal software maintenance process model based on an ontological representa-
tion to integrate different knowledge resources and artifacts.

2. An open environment to support the introduction of new concepts and their rela-
tionships, as well as enriching the existing ontology with newly gained knowledge
or resources.

3. The ability to reason about information in the ontological representation to allow
for an active and context-sensitive guidance during the maintenance process.

4. Analysis of relationships among resources, e.g., the traceability between artifacts.

The process model itself is motivated by approaches used in other application do-
mains, like Internet search engines (e.g., Google1) or online shopping sites (e.g.,
Amazon2). Common to these applications is that they utilize different information
resources to provide an active, typically context-sensitive user feedback that identifies
resources and information relevant to a user’s specific needs. The challenge in apply-
ing similar models in software maintenance goes beyond the synthesis of information
and knowledge resources. There is a need to provide a formal meta-model to enable
reasoning about the potential steps and resources involved in a maintenance process.

For example, a maintainer, while performing a comprehension task, often utilizes
and interacts with various tools (parsers, debuggers, source code analyzers, etc.).
These tool interactions are a result of both, the interrelationships among artifacts
required/delivered by these tools and the specific techniques needed to complete a
particular task. Identifying these often transitive relationships among information
resources becomes a major challenge. Within our approach, we support automated
reasoning across these different information resources (e.g., domain knowledge, docu-
ments, user expertise, software, etc.) to resolve transitive relationships. Furthermore,
our model can be applied to analyze and re-establish traceability links among the
various resources in the knowledge base [1].

From a more pragmatic viewpoint, process models have to be able to adapt to ever
changing environments and information resources to be used as part of the process
itself. In our approach, we address this problem by providing a uniform ontological
representation that can be both extended and enriched to represent any newly gained
knowledge or change in the information resource(s). This knowledge will also be-
come an integrated part of the process that can be further utilized and reasoned on.

The remainder of the article is organized as follows. The relevant research back-
ground is introduced in Section 2. Section 3 describes in detail the context-driven
program comprehension process model, followed in Section 4 by its implementation
and validation. Discussions and future work are presented in Section 5.

1 www.google.com
2 www.amazon.com

www.manaraa.com

58 J. Rilling et al.

2 Background

Historically, software lifecycle models and processes have focused on the software
development cycle. However, with much of a system’s operational lifetime cost oc-
curring during the maintenance phase, this should be reflected in both the develop-
ment practices and process models supporting maintenance activities. It is generally
accepted that even for more specific maintenance task instances (e.g., program com-
prehension, architectural recovery), a fully-automated process is not feasible [11].
Furthermore, existing models share the following common challenges:

• Existing knowledge resources (e.g., user expertise, source code artifacts, tools) are

used to construct mental models. However, without a formal representation, these
process models lack uniform resource integration and the ability to infer additional
knowledge.

• Limited knowledge management that allows the extension and integration of
newly gained resource and knowledge.

• These models provide typically only general descriptions of the steps involved in a
process and lack guidelines on how to complete these steps within a given context
(concrete software maintenance task and available knowledge resources).

In our approach, we provide a formal representation that integrates these informa-

tion resources and allows reasoning and knowledge management across them.
Furthermore, we address the issue of context-sensitive support, i.e., providing the
maintainer with guidance on the use of the different information resources while ac-
complishing a particular task.

Research in cognitive science suggests that mental models may take many forms,
but the content normally constitutes an ontology [8]. Ontologies are often used as a
formal, explicit way of specifying the concepts and relationships in a domain of un-
derstanding [2]. They are typically specified using the standard ontology language,
Description Logics (DL), as a knowledge representation formalism.

DL is also a major foundation of the recently introduced Web Ontology Language
(OWL) recommended by the W3C3. DL represents domain knowledge by first defin-
ing relevant concepts (sometimes called classes or TBox) of the domain and then
using these concepts to specify properties of individuals (also called instances or
ABox) occurring in the domain. Basic elements of DL are atomic concepts and
atomic roles, which correspond to unary predicates and binary predicates in First
Order Logic. Complex concepts are then defined by combining basic elements with
several concept constructors.

Having DL as the specification language for a formal ontology enables the use of
reasoning services provided by DL-based knowledge representation systems. The
Racer system [7] is an ontology reasoner that has been highly optimized to support
very expressive DLs. Typical services provided by Racer include terminology infer-
ences (e.g., concept consistency, subsumption, classification, and ontology consis-
tency) and instances reasoning (e.g., instance checking, instance retrieval, tuple
retrieval, and instance realization). For a more detailed coverage of DLs and Racer,
we refer the reader to [2,7].

3 Available online at http://www.w3.org/TR/owl-ref

www.manaraa.com

 A Unified Ontology-Based Process Model for Software Maintenance 59

3 Modeling a Software Maintenance Process

A model is essentially an abstraction of a real and conceptually complex system that
is designed to display significant features and characteristics of the system, which one
wishes to study, predict, modify or control [13]. In our approach, the software main-
tenance process model is a formal description that represents the relevant information
resources and their interactions (Fig 1).

Fig. 1. Comprehension Process Meta-Model

In what follows, we describe in general: (1) the ontological representation used to
model the information resources, (2) the ontology population and traceability among
ontologies, and (3) the maintenance process and its management.

3.1 An Ontological Software Maintenance Process Model

Through the use of ontologies and DL, we formally model the major information
resources used in software maintenance. The benefits of using a DL-based ontology
as a means to model the structure of our process model are as follows:

Knowledge acquisition and management. As mentioned previously, program com-
prehension is a multifaceted and dynamic activity involving different resources to
enhance the current knowledge about a system. Consequently, any comprehension
process model has to reflect and model both the knowledge acquisition and use of the
newly gained knowledge. The ontological representation provides us with the ability
to add newly learned concepts and relationships, as well as new instances of these to
the ontological representation. This extendibility enables our process model not only
to be constructed in an incremental way, but also to reflect more closely the iterative
knowledge acquisition behavior used to create a mental model as part of human cog-
nition of a software system [3,8]. It is not realistic to expect all these sources to share
a single, consistent view within a comprehension task. Rather, we expect disagree-
ments between individual users and tools during an analysis. In our approach, we
explicitly model those different views using a representational model that attributes
information to (nested) contexts using so-called viewpoints.

An elegant model for managing (possibly conflicting) information from different
sources has been proposed by [18]: Knowledge is structured into viewpoints and
topics. Viewpoints are environments that represent a particular point of view

www.manaraa.com

60 J. Rilling et al.

(e.g.,information stemming from a particular tool or entered by a user). Topics are
environments that contain knowledge that is relevant to a given subject (e.g., design
patterns, architectural recovery). These environments are nested within each other:
viewpoints can contain either other viewpoints or topics. A topic can contain knowl-
edge pertaining to its subject, but also other viewpoints, e.g., when the subject is an-
other user. These viewpoints create spaces that allow consistency to be maintained
within a topic or a viewpoint, but at the same time, conflicting information about the
same topic can be stored in another viewpoint. Therefore, knowledge can be collected
while attributing it to its source, without having to decide on a “correct” set of infor-
mation, thereby avoiding losing information prematurely. Viewpoints can be con-
structed as well as destructed through the processes of ascription and percolation.
Ascription allows incorporating knowledge from other viewpoints (users, tools)
unless there is already conflicting information on the same topic. Percolation is intro-
duced for the deconstruction of nested knowledge.

Reasoning. Having DL as a specification language for a formal ontology enables the
use of reasoning services provided by DL-based knowledge representation systems,
by inferring knowledge through transitive closure across different ontologies. The
DL-based ontology and reasoning services form the basis for both, the knowledge
integration and retrieval used in our process model.

Building a formal ontology for software maintenance requires an analysis of the
concepts and relations of the discourse domain. In particular, the outlined process
model must be supported by the structure and content of the ontological knowledge
base. Our approach here is twofold: We (1) created sub-ontologies for each of the
discourse domains, like tasks, software, documents, and tools (Fig. 1); and (2) link
them via a number of shared high-level concepts, like artifact, task, or tool, which
have been modeled akin to a (simple) upper level ontology [16].

Having different knowledge resources modeled as ontologies allows us to link in-
stances from these knowledge resources using existing approaches from the field
of ontology alignment [17]. Ontology alignment techniques try to align ontological
information from different sources on conceptual and/or instance levels. Since our
subontologies share many concepts from the programming language domain, such as
Class or Method, the problem of conceptual alignment has been minimized. This re-
search therefore focuses more on matching instances that have been discovered both
from source code analysis and text mining.

3.2 Ontological Representation for Software Artifacts

Software artifacts such as source code and documentation typically contain rich struc-
tural and semantic information. Providing uniform ontological representations for
various software artifacts enables us to utilize semantic information conveyed by
them and to establish their traceability links at a semantic level (Fig. 2b). In this sec-
tion, we introduce our SOUND program comprehension environment [22], which was
developed to establish the technical foundation for our ontological software mainte-
nance process model.

The SOUND environment facilitates software maintainers in both discovering
(new) concepts and relations within a software system, as well as automatically infer-
ring implicit relations among different artifacts (Fig. 2a and 2b).

www.manaraa.com

 A Unified Ontology-Based Process Model for Software Maintenance 61

Source Code OntologySource Code Ontology

Software Ontology

Racer – Ontology ReasonerRacer – Ontology Reasoner

Documentation OntologyDocumentation Ontology

Text Mining SystemText Mining System

Eclipse IDE

Query Interface
nRQL/Javascript

Query Interface
nRQL/Javascript

Ontology
Management

Ontology
Management

SOUND Plug-in
Ontology Browser

Document Navigator
Ontology Browser

Document Navigator

Class

Method

Variable

Design Pattern

Paragraph

Sentence

m1
m1

c2
c2c1

c1

c’1c’1 m’1m’1

dp1
dp1

c’2c’2

s1
s1

p1
p1

Documents Source Code

Documentation
Ontology

Source Code
Ontology

Class

Method

Variable

c3
c3

Fig. 2a. Overview of SOUND Environment Fig. 2b. Linking Code and Documentation

Instances of concepts and roles in the software ontology can be populated by either
our Eclipse plug-in or text mining system. The discovered instances from different
sources can be automatically linked through ontology alignment [17]. Based on the
software ontology, users can define new concepts/instances for particular software
maintenance tasks through an ontology management interface. Text Mining (TM) is
commonly known as a knowledge discovery process that aims to extract non-trivial
information or knowledge from unstructured text. Unlike Information Retrieval (IR)
systems, TM does not simply return documents pertaining to a query, but rather at-
tempts to obtain semantic information from the documents themselves, using tech-
niques from Natural Language Processing (NLP).We implemented our TM subsystem
based on the GATE (General Architecture for Text Engineering) framework [4], one
of the most widely used NLP tools [22].

The ontological reasoning services within the SOUND environment are provided
by the ontology reasoner, Racer [7]. Racer’s query language nRQL can be used to
retrieve instances of concepts and roles in the ontology. An nRQL query uses arbi-
trary concept names and role names in the ontology to specify properties of the result.
In a query, variables can be used to store instances that satisfy it. However, the use
of nRQL queries is still largely restricted to users with a good mathematical/logical
background due to nRQL's syntax, which, although comparatively straightforward, is
still difficult for programmers to understand and apply. To bridge this conceptual gap
between practitioners and Racer, we have introduced a set of built-in functions and
classes in the JavaScript interpreter, Rhino4, to simplify querying the ontology for
users. The scriptable query language allows users to benefit from both the declarative
semantics of Description Logics as well as the fine-grained control abilities of proce-
dural languages.

In our previous work, we have already demonstrated an ontological model of
source code and documentation supporting various reverse engineering tasks, such as
program comprehension, architectural analysis, security analysis and traceability links
[22]. We currently investigate its integration with work examining the requirements
for software reverse engineering repositories [15] that deals with incomplete and
inconsistent knowledge on software artifacts obtained from different sources (e.g.,
conflicting information delivered by source code and document analysis).

4 Available online at http://www.mozilla.org/rhino/

www.manaraa.com

62 J. Rilling et al.

3.3 Process Management

The interaction among users and the knowledge resources plays a dominant role in
any software maintenance process model. As part of this interaction, users should
become immersed in the program maintenance process, while the different phases of a
particular maintenance task unfold. The user itself is active and interacts with differ-
ent resources (e.g., support from tools, techniques, documents and expertise) and
other users (e.g., system or historic user data) to complete a particular task. In this
research, we introduce a process management approach that establishes the communi-
cation and interaction between users, the process and the underlying ontology man-
ager [15]. A typical usage scenario of our maintenance process model is illustrated in
Fig. 3. with the iterative nature of the process being reflected by the loop (messages
2-22). A user is completing a comprehension task and the process manager, ontology
manager, reasoner and available resources are all working together to assist the user
during the different phases of the software maintenance process.

Fig. 3. Process Sequence Diagram

After each iteration, users will provide feedback and annotate briefly their experi-
ence with the resources and their success towards problem solving (Messages 18-22).
The resulting feedback is used to further enrich the historical data stored in the ontol-
ogy, as well as trigger the next step in the maintenance process.

In this research, we introduce an iterative process management approach that guides
the communication and interaction between users, the process and the underlying
ontology manager. A user is completing a comprehension task and the process man-
ager, ontology manager, reasoner and available resources are all working together to
assist the user during the different phases of the software maintenance process.

After each iteration, users will provide feedback and annotate briefly their experi-
ence with the resources and their success towards problem solving. The resulting
feedback is used to further enrich the historical data stored in the ontology, as well as
trigger the next step in the maintenance process. A more detailed description of the
process manger can be found in [15].

www.manaraa.com

 A Unified Ontology-Based Process Model for Software Maintenance 63

4 System Implementation and Evaluation

In this section, we provide a general system overview of the implementation of our
process model and a general overview of the ontological implementation used to
model the knowledge base.

4.1 System Overview

The process itself is based on two main components, the process and the ontology
manager.

Ontology Manager is used to manage the infrastructure of the process model,
where the basic elements of the program comprehension process and their inter-
relationships are formally represented by DL-based ontology. Our approach supports
the addition of new concepts and their relations in a given sub-ontology, coordinates
the reasoner with the ontologies, and controls querying and reasoning services across
the sub-ontologies. A user can perform both pre-defined and user-defined queries.
The ontology manager is an extension to our SOUND tool [22], an Eclipse plug-in
that provides both ontology management (software ontology and document ontology
have been developed) and inferences service integration using the Racer [7] reasoner.
So far, the ontology management interface provides the following services: add-
ing/defining new concepts/relationships, specifying instances, browsing the ontology,
and a Java Script based query interface.

Process Manager is built on top of the ontology manager and provides users with
both the context and the interactive guidance during the comprehension process. The
process context is established by the process manager, depending on the user process
interactions, the current state of the knowledge base and the resulting information
inferred by the reasoner. For interactive guidance, the process manager utilizes differ-
ent visual metaphors to establish a representation that allows users to immerse in the
process context and, at the same time, provides an approach to analyze and utilize the
inferred knowledge to provide guidance during the comprehension process itself.

4.2 Initial Evaluation

At the current stage, we have successfully implemented and used our SOUND ontol-
ogy management and query tool to perform comprehension tasks such as impact
analysis, design pattern recovery, and component identification [9]. In addition, we
have defined an initial set of concepts and relations for the remaining sub-ontologies
as the foundation for our process model. A more detailed description of the ontology
implementation can be found in [15].
 A set of frequently used queries has been defined in the system, e.g., identifying the
coupling among classes, recovering the design pattern in a system. We are currently
in the process of conducting a larger case study in collaboration with Defence Re-
search and Development Canada (DRDC) Valcartier to explore and validate the ap-
plicability of our software maintenance process model. The system used for the case
study is an open source software for the analysis and reporting of maritime exercises
– Debrief [5]. As part of the ongoing Debrief case study, we are performing a specific
component substitution task, in which a non-secure file access will be substituted by a

www.manaraa.com

64 J. Rilling et al.

client specific encrypted version. Feedback from the process and information resource
usage will be collected for further refinement and enrichment of both the process
model and the knowledge base.

5 Related Work

There exists only very limited research in applying Description Logics or formal
ontologies in software engineering. The two major projects that are closely related to
our ontological approach are the LaSSIE [6] and CBMS [21] systems. However, these
systems are much more restricted by the expressiveness of their underlying ontology
languages and they lack the support for an optimized DL reasoner, such as Racer in
our case.

Current research in modeling software maintenance processes [10,19,20] typically
describe only very generally the process and lack formal representations. Thus, they
are unable to utilize any type of reasoning services across the different knowledge
sources involved in the comprehension process. To the best of our knowledge, there
exists no previous work that focuses on developing a formal process model to de-
scribe the program comprehension process.

Existing work on comprehension tool integration focuses either on data interopera-
bility using a common data exchange format [20] or on service integration among
different reverse engineering and software comprehension tools [11]. Our approach
can be seen complementary to these ongoing tool integration efforts. Improving the
overall capabilities and applicability of reverse engineering tools will help to enrich
our tool ontology and therefore, directly/indirectly benefit the comprehension process
model. However, our approach goes beyond just mere tool integration. It is the formal
ontological representation that supports both reasoning across different knowledge
sources (including tools) and context support during the comprehension process itself.
Furthermore, our approach provides flexibility and extensibility required to support
the evolution of the process model itself.

6 Conclusions

Our work promotes the use of both formal ontology and automated reasoning in soft-
ware maintenance research, by providing a DL-based formal and uniform ontological
representation of different information resources involved in a typical software main-
tenance process.

As part of our future work, we will conduct several case studies to enrich our cur-
rent ontology and optimize the software maintenance process model for different
maintenance tasks. We are currently in the process of developing a new visual proc-
ess metaphor to improve the context-sensitive guidance during typical maintenance
tasks.

Acknowledgement. This research was partially funded by Defence Research and
Development Canada (DRDC) Valcartier (contract no. W7701-052936/001/QCL).

www.manaraa.com

 A Unified Ontology-Based Process Model for Software Maintenance 65

References

1. G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information retrieval models for
recovering traceability links between code and documentation”. In Proceedings of IEEE
International Conference on Software Maintenance, San Jose, CA, 2000.

2. F.Baader, D. Calvanese, D. McGuinness, D.Nardi, P.P.-Schneider, “The Description Logic
Handbook”. Cambridge University Press, 2003.

3. R. Brooks, “Towards a Theory of the Comprehension of Computer Programs”. Int. J. of
Man-Machine Studies, pp. 543-554, 1963.

4. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications.” Proceed-
ings of the 40th Anniversary Meeting of the ACL (ACL'02). Philadelphia, July 2002.

5. Debrief, www.debrief.info, last accessed 25/10/2006.
6. P.Devanbu, R.J.Brachman, P.G.Selfridge, and B.W.Ballard, “LaSSIE: a Knowledge-based

Software Information System”, Com. of the ACM, 34(5):36–49, 1991.
7. V. Haarslev and R. Möller, “RACER System Description”, In Proc. of International Joint

Conference on Automated Reasoning, IJCAR'2001, Italy, Springer-Verlag, pp. 701-705.
8. P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-

ence and Consciousness”. Harvard University, Cambridge, Mass., 1983.
9. A. V. Mayhauser, A. M. Vans, “Program Comprehension During Software Maintenance

and Evolution”. IEEE Computer, pp. 44-55, Aug.,1995.
10. IEEE Standard for Software Maintenance, IEEE 1219-1998.
11. D. Jin and J. R. Cordy. "Ontology-Based Software Analysis and Reengineering Tool Inte-

gration: The OASIS Service-Sharing Methodology". 21st IEEE ICSM, 2005.
12. P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-

ence and Consciousness”. Harvard University, Cambridge, Mass., 1983.
13. M. I. Keller, R. J. Madachy, and D. M.Raffo, “Software Process Simulation Modeling:

Why? What? How?”. Journal of Systems and Software, Vol.46, No.2/3, 1999.
14. U. Kölsch and R. Witte, “Fuzzy Extensions for Reverse Engineering Repository Models”.

10th Working Conference on Reverse Engineering (WCRE), Canada, 2003.
15. W. Meng, J. Rilling, Y. Zhang, R. Witte, P. Charland, “An Ontological Software Compre-

hension Process Model”, 3rd Int. Workshop on Metamodels, Schemas, Grammars, and
Ontologies for Reverse Engineering (ATEM 2006), Genoa, October 1st, 2006, pp. 28-35.

16. Niles and A. Pease. “Towards a Standard Upper Ontology”. Proc. of the 2nd Int. Conf. on
Formal Ontology in Information System (FOIS), Maine, 2001.

17. N. F. Noy and H. Stuckenschmidt, “Ontology Alignment: An annotated Bibliography –
Semantic Interoperability and Integration” Schloss Dagstuhl, Germany, 2005.

18. A. Ballim, Wilks, “Artificial Believers: The Ascription of Belief”,Lawrence Erl-
baum,1991.

19. C. Riva, "Reverse Architecting:An Industrial Experience Report", 7th IEEE
WCRE, pp.42-52, 2000.

20. M. -A. Storey, S. E. Sim, K. Wong, “A Collaborative Demonstration of Reverse Engineer-
ing tools”, ACM SIGAPP Applied Computing Review, Vol. 10(1), pp18-25, 2002.

21. C.Welty, “Augmenting Abstract Syntax Trees for Program Understanding”, Proc. of Int.
Conf. on Automated Software Engineering. IEEE Computer Soc .Press. 1997, pp. 126-133.

22. Y. Zhang, R. Witte, J. Rilling, V. Haarslev, “An Ontology-based Approach for Traceabil-
ity Recovery”, 3rd International Workshop on Metamodels, Schemas, Grammars, and On-
tologies for Reverse Engineering (ATEM 2006), Genoa, October 1st, 2006, pp. 36-43.

www.manaraa.com

Formalizing the Well-Formedness Rules of
EJB3QL in UML + OCL

Miguel Garcia

Hamburg University of Technology, Hamburg 21073, Germany
���������	
��������

������������������	��	�����������	
���

Abstract. This paper reports the application of language metamodel-
ing techniques to EJB3QL, the object-oriented query language for Java
Persistence recently standardized in JSR-220. Five years from now, to-
day’s EJB3 applications will be legacy. We see our metamodel as an
enabler for increasing the efficiency of reverse engineering activities. It
has already proven useful in uncovering spots where the EJB3QL spec
is vague. The case study reported in this paper involved (a) expressing
the abstract syntax and well-formedness rules of EJB3QL in UML and
OCL respectively; (b) deriving from that metamodel software artifacts
required for several language-processing tasks, targeting two modeling
platforms (Eclipse EMF and Octopus); and (c) comparing the gener-
ated artifacts with their counterparts in the reference implementation
of EJB3 (which was not developed following a language-metamodeling
approach). The metamodel of EJB3QL constitutes the basis for apply-
ing model-checkers to aid in assuring conformance of tools claiming to
support the specification.

Keywords: Metamodel, OCL, Static semantics, EJB3QL.

1 Introduction

Language Engineering [1] is an increasingly important area which leverages basic
results from Computer Science and a variety of tools developed over the years.
Its main goals are (a) simplifying the generation of language processing tools
and environments, as well as (b) offering guarantees about their conformance
and interoperability. Progress around the first category (productivity) has ben-
efited software practitioners facing the task of developing tooling for domain-
specific languages in a cost-effective manner. The second category (correctness)
has received less attention overall. Our findings confirm that metamodel-based
language specifications are well-suited for both the “productivity” and the “cor-
rectness” categories.

Concrete examples of features under the “productivity” category include
syntax-aware editors, support for visual syntax (either for editing or visual-
ization only), and integrated software repositories (cross-artifact detection of
inconsistencies, metrics). Support under the “correctness” category includes the
model-checking of language processing algorithms to offer guarantees about the

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 66–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL 67

transformations they realize. Two basic desirable guarantees are: (a) that all out-
put sentences belong to the target language [2], and (b) that the transformation
function covers the whole input language for which it was designed [3]. Expe-
rience with current model-driven tooling shows that these basic requirements
are not always met. Beyond these general requirements, guarantees specific to a
transformation are also desirable. For example, that an optimized implementa-
tion outputs the same result as the non-optimized version.

The structure of this paper is as follows. Sec. 2 presents motivational examples
of well-formedness rules and their formulation in the metamodel of EJB3QL.
Sec. 3 discusses the impact of language metamodeling techniques on the con-
sistency and completeness of a language specification. Sec. 4 summarizes places
where the JSR-220 EJB3QL spec was found to be incomplete or imprecise. Sec. 5
is devoted mostly to tooling, explaining how to integrate in language processing
tools the software artifacts generated from metamodels. Sec. 6 discusses related
work, with Sec. 7 offering conclusions and possibilities for further work.

This paper assumes knowledge from the reader about object-oriented model-
ing and database query languages. The software artifacts developed as part of
this case study are available for download from [16].

2 Reverse Engineering the EJB3QL Spec: How and Why

The EJB3QL spec includes an EBNF grammar which, as usual, cannot capture
all the constraints for the static semantics (also called well-formedness rules,
WFRs) of the language being defined. The lack of a machine-processable specifi-
cation of all relevant WFRs leaves open the possibility of non-interoperable im-
plementations of the semantic analysis component in language processing tools.

As a simple example of one such check, JSR-220 requires “Entity names are
scoped within the persistence unit and must be unique within the persistence
unit.” (Sec. 4.3.1). The OCL formulation is as follows:

context Per s i s t enceUn i t
inv WFR 4 3 1 : s e l f . e n t i t i e s −>i sUnique (name)

Beyond the productivity gain (once expressed in OCL, Java code to evaluate it
can be generated automatically), the fact that this check is specified declaratively
instead of implemented procedurally makes the resulting artifacts amenable to
formal verification.

The argument can be made that even if abstract syntax is expressed as a
UML+OCL metamodel, an EBNF grammar is still required to specify a concrete
textual syntax. Proposals exist [4,5] to decorate an object-oriented language de-
scription with annotations to specify concrete syntax by choosing among a fixed
palette of alternatives (e.g. to indicate whether an operator is prefix or infix). A
further use for such information is the generation of an unparser. Additionally,
if a representation of the metamodel is available at runtime, the implementation
of syntax-sensitive features (e.g. content assist) is made simpler.

www.manaraa.com

68 M. Garcia

Fig. 1. Metamodel fragment for the UPDATE statement

3 Consistency and Completeness Enforced by Language
Metamodeling

Expressing the structure and WFRs of a language as a UML+OCL metamodel
forces the specification authors to consider corner cases that may be easily over-
looked otherwise. While encoding in OCL the WFRs around type compatibil-
ity for comparison and for assignment expressions, we noticed that the spec is
not clear about which combinations of (LHS type, RHS type) are valid in as-
signments (as part of the UPDATE statement), in case persistent entity types
are involved. The spec is silent about whether assigning a B-typed value to a
field with declared type A (where B is a subtype of A) is standard across im-
plementations, implementation-dependent, or disallowed. Portability warnings
for such cases are encoded in our metamodel as OCL invariants. The names
of the invariants have been chosen to allow for easy cross-referencing with the
spec, each such name starts with “WFR ” followed by the section number where
the spec introduces the constraint. For example, “State-fields that are mapped
in serialized form or as LOBs may not be portably used in conditional expres-
sions” (Sec. 4.6 of the spec) can be found by searching for PORTABILITY 4 6.
This section discusses in more detail our observations around the UPDATE
statement.

www.manaraa.com

Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL 69

Following the grammar in the spec, our metamodel allows an UPDATE state-
ment to own one or more UpdateItem, each representing a LHS := RHS. All
constructs that are allowed on the LHS support the UML interface LHSUp-
dateItem, similarly for those on the right hand side (Figure 1). For comparison,
the EBNF counterpart is reproduced in Table 1.

Notice that all shared properties of alternatives in a production rule can be
factored out into the interface that covers them. In the UPDATE example, all
constructs (and only those) on the RHS that may evaluate to a primitive type
conform to the interface RHSUpdateItemSupportedJavaType. In general, inter-
faces allow an OCL expression to abstract away from sub-cases.

Table 1. EBNF fragment for the UPDATE statement

update statement ::= update clause [where clause]

update clause ::=

UPDATE abstract schema name [[AS] identification variable]

SET update_item {, update_item}*
update item ::=

[identification variable.]

{state field | single valued association field } = new value
new value ::=

simple arithmetic expression |

string primary |

datetime primary |

boolean primary |

enum primary

simple entity expression |

NULL

Sec. 4 10 of the spec deals with assignments involving primitive types only:
“The new value specified for an update operation must be compatible in type
with the state-field to which it is assigned.” The WFR for type compatibility for
comparison (not assignment) between entities establishes: “Two entities of the
same abstract schema type are equal if and only if they have the same primary
key value.” (Sec. 4.12).

Making explicit the underspecified assignment case is forced upon us by OCL
type checking. It all starts when we consider the two sub-cases for a LHS: inter-
face LHSUpdateItem is realized by classes StateField and by SingleValuedAs-
socField only (our metamodel faithfully enforces the partition semantics: the
sub-cases cover completely and are disjoint with each other).

Listing 1.1 reproduces the OCL if-statement that specifies the compatibility
condition for the primitive-types case (the then-branch) as well as the entity-
types case (the else-branch). The else-branch in turn has to consider again the
two partitioning sub-cases of the RHS: primitive or entity. The first case prompts
returning false (the types are not assignment-compatible). The second case em-
bodies a conservative approach: only assignments of entities of exactly the same

www.manaraa.com

70 M. Garcia

declared type are allowed, for lack of additional assurance from the specification.
This can be revised as the spec is updated.

Listing 1.1. OCL encoding of type compatibility for assignments in an UpdateItem

−− ”The new value s p e c i f i e d f o r an update opera t i on must be
−− compat i b l e in type wi th the s t a t e − f i e l d to which
−− i t i s as s i gned ”
context UpdateItem
inv WFR 4 10 A :
i f l e f t . oc l I sKindOf (ejb3qlmm : : pathExp : : S t a t eF i e l d)

then
−− LHS i s typed wi th SupportedJavaType
i f not rightNewValue . oc l I sKindOf (

ejb3qlmm : : stmts : : RHSUpdateItemSupportedJavaType)
then f a l s e
else l e t
t1 : ejb3qlmm : : schema : : SupportedJavaType

= l e f t . oclAsType (ejb3qlmm : : pathExp : : S t a t eF i e l d)
. type () ,

−− RHS i s e i t h e r SimpleArithExp , StringPrimary ,
−− BooleanPrimary , DatePrimary , or EnumPrimary

t2 : ejb3qlmm : : schema : : SupportedJavaType
= rightNewValue . oclAsType (

ejb3qlmm : : stmts : : RHSUpdateItemSupportedJavaType)
. type ()

in ejb3qlmm : : schema : : SupportedJavaType : :
areTypeCompatible (t1 , t2)

endif
e lse

−− LHS i s typed wi th AbstractSchema
i f not rightNewValue . oc l I sKindOf (

ejb3qlmm : : stmts : : RHSUpdateItemEntity)
then f a l s e
else l e t

t1 : AbstractSchema = l e f t . oclAsType (
ejb3qlmm : : schema : : S ingleValuedAssocFie ld) . type ,

−− RHS i s e i t h e r RHSNull , IdVarDecl , or EntityInputParam
t2 : AbstractSchema = rightNewValue . oclAsType (

ejb3qlmm : : stmts : : RHSUpdateItemEntity) . type ()
in t1 = t2 −− TODO spec incomplete .

−− What about i nhe r i t ance ?
endif

endif

The metamodeling approach allows expressing “details” which are taken for
granted as unstated assumptions in most language specs. Continuing with the

www.manaraa.com

Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL 71

example of UpdateItem, it can be made explicit that the fields being assigned are
actually visible (declared or inherited) at the type of the entity being updated:
context UpdateItem

inv LHSVis ib i l i t y :
s e l f . updateStmt . fromClause . type () . i s V i s i b l e (s e l f . l e f t)

4 Selected Examples of Additional Corner Cases

Just like in SQL, queries and subqueries may declare one or more identification
variables in a FROM clause. The SELECT, WHERE, GROUP BY, and HAV-
ING clauses may then refer to these variables. In case subqueries are present,
the spec is not clear about how to interpret a nested variable declaration with
the same name as a declaration in the outer scope. Is it disallowed or does it
hide the outer declaration? For example:

������ �

��	
 ������� �

����� ���������	���

� � ������ �������������	����

��	
 ������� � �

Our interpretation of the scope rules (Sec. 4.4.2 and 4.6.2 of the spec) can be
summarized as follows: A FROM clause (and other constructs) introduces a new
scope for identification variables. Scopes may be nested forming a tree hierarchy,
with (new) variables declared in an inner scope hiding those with the same name
in surrounding scopes. To confirm whether ORM (Object-Relational Mapping)
engines conforming to the JSR-220 spec follow this interpretion, EJB3QL queries
involving variable hiding were translated to SQL with two different engines. The
resulting SQL exhibits variable hiding by explicitly renaming the declaration
and usages of the inner variables.

In terms of our metamodel, we check in each query (including subqueries)
whether all usages of variables refer to variables which are visible:

Listing 1.2. Declarations-before-usages for a SelectStmt

context Se lectStmt
inv WFR 4 6 2 A :

(not s e l f . whereClause−>isEmpty ()
implies
s e l f . whereClause . a r eA l lR e f e r r edVar sV i s i b l e (

s e l f . l o c a l l yDec l a r ed IdVar s ())
) and (

not s e l f . havingClause−>isEmpty ()
implies
s e l f . havingClause . a r eA l lR e f e r r edVar sV i s i b l e (

s e l f . l o c a l l yDec l a r ed IdVar s ())
)

www.manaraa.com

72 M. Garcia

The argument received by function areAllReferredVarsVisible() is a set con-
taining the declarations of visible variables. The recursive nature of the check
performed by areAllReferredVarsVisible() can be seen at work for a subquery.
The overriding OCL defintion is shown in Listing 1.3. Before checking whether
its WHERE and HAVING clauses (if any) fulfill the declares-before-usages con-
straint, the scope is augmented with the locally declared variables by using the
OCL union() operator:

Listing 1.3. Declarations-before-usages for a subquery

context Subquery : : a r eA l lR e f e r r edVar sV i s i b l e (varsInScope :
Set (ejb3qlmm : : idVarDecl : : IdVarDecl)) : Boolean

body :
(not s e l f . whereClause−>isEmpty ()

implies
s e l f . whereClause . a r eA l lR e f e r r edVar sV i s i b l e (

varsInScope−>union (s e l f . l o c a l l yDec l a r ed IdVars ()))
) and (

not s e l f . havingClause−>isEmpty ()
implies

s e l f . havingClause . a r eA l lR e f e r r edVar sV i s i b l e (
varsInScope−>union (s e l f . l o c a l l yDec l a r ed IdVars ()))

)

5 Integrating the Artifacts Generated from the Language
Metamodel in a Software Project

After the EJB3QL metamodel passed the validation checks enforced by Octo-
pus [6], artifacts were generated for use as building blocks in a larger toolset.
These artifacts are available for download from [16]:

1. An in-house developed extension to Octopus was used to generate an AST
library in Java. Our extension generates Java 5 code (using generics, enums)
by building upon Octopus’ approach to compiling OCL expressions into Java
statements.

2. In another project, an Eclipse plugin was developed to translate a valid
UML+OCL specification from Octopus into its EMF counterpart, by gener-
ating a human-readable Emfatic document [7] with annotations containing
OCL expressions for interpretation at runtime [8]. In anticipation of this
step, our metamodel was prepared using only those constructs of UML 1.4
amenable for translation into EMF.

3. The evaluation of OCL invariants takes place for individual ASTs which are
built either programmatically or by means of a GUI. The GUI was generated
by EMF and consists of a tree editor with property sheets. A console allows
typing ad-hoc OCL queries for direct evaluation on selected elements. This
prototype provided early feedback on visual AST construction.

www.manaraa.com

Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL 73

6 Related Work

The (automatic) conversion of an EBNF-based language description into a meta-
model based one (e.g. MOF-based) has been addressed before [9]. The resulting
metamodel lacks WFRs which were not present in the grammar in the first
place. These constraints can be added manually, with OO generalization and
namespace mechanisms allowing for compact expressions.

Language metamodels based on UML+OCL ease the task of integrating differ-
ent kinds of software artifacts in a single software repository, offering advantages
over manipulating a subset of the artifacts that should remain inter-consistent
(language schemas [10] have been used for this before). For example, a reposi-
tory may warn about EJB3QL queries requiring full table scans, resulting from
Cartesian products where the fields involved in the selection condition are not
indexed. Finding such queries involves access to both a representation of the
database physical schema and to the ASTs of the EJB3QL queries. Software
repositories allowing querying with OCL have been reported [11].

Fig. 2. Logical database schemas for EJB3QL are instantiations of this metamodel

An interesting issue around translating OCL queries into their EJB3QL re-
alization is the adjustment to a similar but not identical type system (that for
EJB3QL is depicted in Figure 2). This transformation surfaces in the context of
the refinement of a Platform Independent Model (PIM) to a Platform Specific
Model (PSM), in our case to Java Enterprise Edition, including EJB3QL.

www.manaraa.com

74 M. Garcia

One such adjustment has to do with the data modeling capabilities of PIM and
PSM. For example, a UML+OCL (platform-independent) model abstracts the
realization mechanism for {�������} association ends. A particular PIM to PSM
refinement will choose one of several mapping patterns to realize the {�������}
feature (involving at least an additional column, possibly additional tables). As a
result, the automatic translation to EJB3QL of OCL queries relying on ordered
collections must take the chosen pattern into account, making explicit use of it
in the platform-specific representation. Patterns for mapping OCL constructs to
SQL’92 (with stored procedures) have been reported [13].

7 Conclusions and Future Work

Improving the quality of enterprise-class software systems requires at some point
advanced decision procedures, which in turn build upon precise language def-
initions. Reverse engineering and other activities in the software development
process can cope with the increasing complexity of software architectures only
by adopting precise language definitions as a foundation, while simultaneously
addressing “productivity” and “correctness” as defined in Sec. 1. Our case study
shows by construction how to achieve better language definitions by apply-
ing metamodeling techniques to a language used in building enterprise-class
systems.

Language-processing algorithms can rely on tree walkers and visitor skeletons
generated from language metamodels. For EJB3QL, an obvious example is a
visitor for translating to SQL’92. More sophisticated visitors can also be imple-
mented once the infrastructure reported in this paper is in place: predicting exe-
cution time, or displaying the access paths of a query (to visualize the depends-on
relationships between materialized views). A metamodel for the syntax of SQL
99/2003 (without well-formedness as of now) is available for EMF [12], thus
allowing AST-to-AST translation from EJB3QL to SQL.

As we have seen, different levels of formality are sufficient for different pur-
poses. We plan to leverage the OCL formulation of WFRs by translating them
into a logical formalism for which a model checker (TLA+ [14], +CAL [15]) is
available. +CAL is an imperative language meant to replace pseudo-code for
writing high-level descriptions of algorithms, for which a translator to TLA+ is
available. Once the data structures and typing conditions specified in a language
metamodel are expressed in +CAL, assertions made for the algorithms can be
model-checked. As mentioned in the +CAL and TLA+ literature, the expres-
sive power of their underlying formalism precludes decidability (i.e. not all valid
theorems can be proved by a tool), but experience has shown that the tools can
cope with most specifications that engineers write.

An area we plan to explore is the suitability of an UML+OCL metamodel
as a “formalism-independent” way to jumpstart a formal language specification.
Once translated into the formalism of choice, we expect to give additional detail
(e.g. behavioral semantics, security, quality-of-service) to be used in the formal
verification of properties of interest.

www.manaraa.com

Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL 75

Acknowledgement. Liu Yao proficiently contributed to the implementation
of this case study as part of his master thesis on Eclipse-based support for
Domain-Specific Languages.

References

1. Klint, P., Lämmel, R., and Verhoef. C., Towards an Engineering Discipline for
Grammarware, ACM Transactions on Software Engineering and Methodology, Vol.
14, No. 3, July 2005, pp. 331-380.

2. Huang, S. S., Zook, D., Smaragdakis, Y.: Statically Safe Program Generation with
SafeGen, In R. Glück and M. Lowry, editors, 4th Intnl. Conf. on Generative Pro-
gramming and Component Engineering (GPCE’05), Tallin, Estonia. September
2005. LNCS, vol. 3676, pp. 309-326. Springer-Verlag, 2005.

3. Wang, J., Kim, S-K., Carrington, D.: Verifying Metamodel Coverage of Model
Transformations. aswec, pp. 270-282, Australian Software Engineering Conference
(ASWEC’06), Sydney, Australia. April 2006.

4. Jouault, F., Bézivin, J., and Kurtev, I.: TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. To appear in Proc. of the 5th Intnl.
Conf. on Generative programming and Component Engineering, Portland, Oregon.
October 2006.

5. Muller, P-A., et. al.. Model-Driven Analysis and Synthesis of Concrete Syntax. To
appear in Proc. of the MoDELS/UML 2006, Genoa, Italy. October 2006.

6. Klasse Objecten, Octopus: OCL Tool for Precise Uml Specifications.
http://octopus.sourceforge.net/

7. Emfatic Language for EMF, http://www.alphaworks.ibm.com/tech/emfatic
8. Damus, C. W.: Implementing Model Integrity in EMF with EMFT OCL.

IBM developerWorks, August 2006. http://www.eclipse.org/articles/Article-EMF-
Codegen-with-OCL/article.html

9. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta Ob-
ject Facility Metamodels. Tech. Rep. No. 606, Turku Centre for Computer Science,
March 2003.

10. Jin. D., Cordy, J.R., Dean, T. R.: Where’s the Schema? A Taxonomy of Patterns
for Software Exchange, 10th International Workshop on Program Comprehension
(IWPC’02), pp. 65-74, 2002.

11. Antoniol, G. Di Penta, M. Merlo, E.: YAAB (Yet another AST browser): using OCL
to navigate ASTs. 11th IEEE International Workshop on Program Comprehension
(IWPC ’03), pp. 13- 22. Washington, DC, USA. May 2003.

12. SQL 99/2003 Metamodel. http://www.eclipse.org/datatools/project modelbase/
13. Demuth, B., Hussmann, H.: Using OCL Constraints for Relational Database De-

sign. Proc. 2nd International Conference UML’99, Springer LNCS 1723, pp. 598-
613, 1999.

14. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Leslie Lamport, Addison-Wesley (2002). ISBN 032114306X.

15. Lamport, L.: The +CAL Algorithm Language. 2006. Submitted for publication,
http://research.microsoft.com/users/lamport/pubs/pluscal.pdf

16. EJB3QL Metamodel and accompanying software artifacts.
������������������	��	�����������	
��������������

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 76 – 79, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The 1st Workshop on Quality in Modeling

Ludwik Kuzniarz1, Jean Louis Sourouille2, and Miroslaw Staron3

1 Department of Software Engineering and Computer Science,
Blekinge University of Technology, Ronneby, Sweden

Ludwik.Kuzniarz@bt.se
2 INSA, Lyon, France

Ludwik.Kuzniarz@bth.se
3 IT University, Goteborg, Sweden
Miroslaw.Staron@ituniv.se

Overview

Quality assessment and assurance constitute an important part of software
engineering. The issues of software quality management are widely researched and
approached from multiple perspectives and viewpoints. The introduction of a new
paradigm in software development – namely Model Driven Development (MDD) and
its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven
Engineering], MBD [Model Based Development], MIC [Model Integrated
Computing]) – raises new challenges in software quality management, and as such
should be given special attention. In particular, the issues of early quality assessment,
based on models at a high abstraction level, and building (or customizing the existing)
prediction models for software quality based on model metrics are of central
importance for the software engineering community.

The workshop is a continuation of a series of workshops on consistency that have
taken place during the subsequent annual UML conferences and recently MDA-FA.
The idea behind this workshop was to extend the scope of interests and to address a
wide spectrum of problems related to MDD. It is also in line with the overall initiative
of the shift from UML to MoDELS.

The goal of this workshop was to gather researchers and practitioners interested in
the emerging issues of quality in the context of MDD. The workshop was intended to
provide a premier forum for discussions related to software quality and MDD. And
the aims of the workshop were:

• to present ongoing research related to quality in modeling in the context of MDD,
• to define and organize issues related to quality in the MDD.

The workshop was structured to contain two parts: presentation and discussion.
The presentation part was aimed at reporting research results related to different
aspects of quality in modeling. Seven papers were selected for the presentation out
of 16 submissions. The discussion part included topics related to the notions of
quality in modeling, the perspectives of quality, and the understanding of these
perspectives.

www.manaraa.com

 The 1st Workshop on Quality in Modeling 77

Presentations

In general the submissions and presentations addressed specific issues, which were
more closely related to consistency than to quality. In particular the papers considered
such issues as:

• checking satisfiability of a given class diagram,
• checking consistency between two types of models,
• measuring semantic quality of a given model,
• using graph theory to assist in resolving inconsistencies,
• verification and validation of quality of models w.r.t. government standards,
• empirical evaluation of how modeling conventions influence the quality,
• measuring the quality of OCL expressions.

The trend in the presentations reflected to overall trend of the conference –
introducing modeling methods and languages other than UML, although the majority
of the papers were written in the context of UML. The presentations on the above
topics raised discussions related to the understanding of UML, or more specifically, to
the problems with the definition of the consistency.

Discussions

The second, especially important, part of the workshop was devoted to discussions
related to the notion of quality in modeling.

Firstly, a general understanding of the notion of quality in modeling was discussed.
The participants were involved in the discussions on the taxonomy of quality-related
issues: the organization of these issues in perspectives. The pairs of perspectives
could be the following:

• concepts and pragmatics,
• process and language,
• system and model,
• internal and external,
• maintenance and development.

Secondly, a detailed discussion on two of the identified perspectives took place. The
discussion considered two orthogonal perspectives of quality:

• the concept of quality in modeling, and
• the pragmatics of quality management in modeling.

The combination of participants from industry and academia provided a unique
opportunity to discuss both pragmatics and theory behind the notion of quality in
modeling.

The discussion related to the first perspective, the concept of quality in modeling,
led to a number of issues that need further research:

• understanding of the notion of quality in general,
• amount of model quality which is needed in software projects,

www.manaraa.com

78 L. Kuzniarz, J.L. Sourouille, and M. Staron

• measurements of quality – metrics and methods to work with these metrics,
• influence of the quality of models on certain product characteristics – quality of

products, development effort, or project costs.

The second discussed perspective was the pragmatics of quality management. The
discussions within this topic were focused on:

• cost of quality, with as sub-topics:
− costs of removing or working with low quality models
− benefits and costs of maintaining high quality of models
• scalability of quality maintenance methods

The final outcome of the workshop was a set of potential research areas which are of
joint interest between industry and academia.

Important Future Research Directions

The main focus of the discussion was industrial applicability and relevance of the
methods for improving, maintaining, and defining the quality of models. One of
issues important for the audience was the visibility and evidence of a clear benefit for
industry in the area of quality in modeling. The outcomes of this discussion can be
summarized in the following points:

1. Industry expects the researchers to develop methods which will be directly usable
in specific companies providing the researchers with the data.

2. There is a need for more empirical evidence and evaluation of the methods for
quality assessment and management in modeling – e.g. to evaluate that the
methods indeed bring improvements to the development processes and to given
product characteristics.

3. Methods for improving quality in modeling require a large degree of scalability to
increase their chances of being accepted by industry.

4. There is a need for empirical studies into applicability of general software quality
methods to software models and which potential improvements are needed.

5. There is a need for methods for benchmarking the models w.r.t. various aspects of
quality.

The above research directions formed an important outcome of the workshop and
indicated the trend in the future shaping of this workshop, as a need for this kind of
forum was sustained.

Summary

The workshop presentations were rather narrowly focused. They mostly concerned
one specific aspect of quality, namely consistency. The discussion was broader and
resulted in identifying perspectives from which quality should be addressed, as well
as, foreseen areas and topics for the follow up activities.

www.manaraa.com

 The 1st Workshop on Quality in Modeling 79

The following two papers were chosen as the best papers of the workshop:

• Consistency of Business Process Models and Object Life Cycles, by Ksenia
Ryndina1, Jochen M. Kuster, and Harald Gall,

• A Qualitative Investigation of UML Modeling Conventions, by Bart Du Bois,
Christian F.J. Lange, Serge Demeyer and Michel R.V.Chaudron.

www.manaraa.com

Consistency of Business Process Models
and Object Life Cycles

Ksenia Ryndina1,2, Jochen M. Küster1, and Harald Gall2

1 IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland
{ryn,jku}@zurich.ibm.com

2 Department of Informatics, University of Zurich, Binzmühlestr. 14
8050 Zurich, Switzerland

gall@ifi.unizh.ch

Abstract. Business process models and object life cycles can provide
two different views on behavior of the same system, requiring that these
models are consistent with each other. However, it is difficult to reason
about consistency of these two types of models since their relation is
not well-understood. We clarify this relation and propose an approach
to establishing the required consistency. Object state changes are first
made explicit in a business process model and then the process model
is used to generate life cycles for each object type used in the process.
We define two consistency notions for a process model and an object life
cycle and express these in terms of conditions that must hold between a
given life cycle and a life cycle generated from the process model.

Keywords: consistency, business process model, object life cycle, activ-
ity diagram, state machine, UML.

1 Introduction

Business process models are nowadays a well-established means for representing
business processes in terms of tasks that need to be performed to achieve a certain
business goal. In addition to tasks, business process models also show the flow
of business objects in a process. Complete behavior of business objects is usually
modeled using a variant of a state machine called an object life cycle (see e.g. [5]).
Object life cycle modeling is valuable at the business level to explicitly represent
how business objects go through different states during their existence.

There are situations where it is beneficial or even required to use both process
models and object life cycles. Consider an insurance company that uses business
process models for execution and also maintains explicit business object life
cycles. Life cycles may serve as a reference to employees for tracking progress
of business objects. For instance, in response to an enquiry about the state of a
submitted claim, an employee can explain the current claim state to the customer
in the context of the entire claim life cycle that shows all the possible states and
transitions for claims. Another example is encountered in compliance checking,
where existing business process models are benchmarked against best practice
models (e.g. ACORD [2] and IFW [4]) given as object life cycles. Given a best

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 80–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Consistency of Business Process Models and Object Life Cycles 81

practice object life cycle, it is required to ensure that an existing business process
model is compliant with it.

When both business process models and object life cycles are used, it is re-
quired that these models are consistent with each other. Inconsistencies can lead
to unsatisfied customers or compliance violations. For example, a customer may
be discontent if he/she is incorrectly informed about the processing that still
needs to be done before his/her claim is settled. On the other hand, inconsisten-
cies between an existing process model and a best practice object life cycle lead
to compliance violations that can cause legal problems for a company.

Consistency of object-oriented behavioral models, such as scenarios and state
machines, has already been extensively studied [9,10,16,18]. However, the re-
lation between business process models and object life cycles is not yet well-
understood, which makes it difficult to reason about their consistency.

In this paper, we present our approach to establishing consistency of a busi-
ness process model and an object life cycle. In Section 2, we introduce subsets
of UML2.0 Activity Diagrams (UML AD) and State Machines (UML SM) [3]
chosen for business process and object life cycle modeling, respectively. In Sec-
tions 3 and 4, we describe our proposed solution that comprises a technique for
object life cycle generation from a process model and two consistency notions
that can be checked using the generated life cycles. Finally, we discuss related
work in Section 5, and conclusions and future work in Section 6.

2 Business Process Models and Object Life Cycles

UML AD is one of the most widely used languages for business process modeling.
We consider process models in a subset of UML AD that includes action nodes
and control nodes (decision, merge, fork, join, start1, flow final and activity final
nodes). All these nodes can be connected with control and object flows. Input
and output pins are used to model connection points that allow object flows
to be attached to nodes, with the exception of start nodes that may not have
outgoing object flows. Each object pin has an inState attribute that allows one
to specify the possible states of objects passed through this pin. Data inputs
and outputs of processes are modeled using input and output parameters. Our
experience with case studies has shown that in practice most process models are
created using this subset of UML AD. Therefore, currently we do not consider
more advanced elements such as loop nodes and parameter sets, and further
assume that hierarchy in process models can be flattened. The reader is referred
to the UML AD specification [3] for further information about the language.

Figure 1 shows an example business process model for a Claims handling
process from the insurance industry that is represented in the chosen subset of
UML AD. In this diagram, we can see that the Claims handling process starts
when a Settlement in state Requested is received by the process. Next, a new
Claim object is created in state Registered by the Register new claim action.

1 These are called initial nodes in UML AD, but renamed here to avoid confusion with
initial states of object life cycles introduced later.

www.manaraa.com

82 K. Ryndina, J.M. Küster, and H. Gall

Check for
fraud

Evaluate

Initiate
fraud

investigation

Prepare
settlement

Notify
rejection

Prepare for
reevaluation

Close

Claim Claim

Claim

Claim

Claim

Claim
[Granted]

[Settled]

[Fraudulent]

[NotFraudulent]

[Granted]

[PreRejected]

[Rejected]

[Registered]
[Fraudulent,

NotFraudulent]

[NotFraudulent,
NeedsReevaluation]

[Authorized] [Settled]

[Rejected,
NeedsReevaluation]

Carry out
payment

[Settled,
Rejected]

[Closed]

[NeedsReevaluation]

Claim

[NeedsReevaluation]

Claim

x

x
object type

object type

start
node

control
flow

object
flow

action
node

pin
parameter decision node merge node fork node join node

flow final
node

LEGEND

Claim

Claim
Claim

Claim

Settlement

Claim

Settlement

Claim

Claim

Claim

object type

object
state

[states]

[Rejected]

Claim

Register
new claim

Settlement

[Requested]
Settlement

[Requested]

Settlement

[Granted,
Rejected,

PreRejected]

activity
final node

Fig. 1. Claims handling business process model

The Claim further goes through a number of processing steps that change its state
and at the end of the process it is either found to be fraudulent, or it is rejected or
settled and subsequently closed.

In Figure 1 we use a slightly tailored graphical representation of the chosen
UML AD subset. We indicate object type above an object flow and not above
each pin, because we make a simplifying assumption that an object flow can only
connect two pins of the same type. We also assume that given two connected
object pins (output pin and input pin), the states associated with the output
pin are accepted by the input pin, i.e. the set of states of the output pin is a
subset of the set of states of the input pin. In Figure 1 we indicate the states
associated with the output pin on the connecting object flow.

Associating states with object pins is optional in UML AD, but required in our
approach, as this explicit information about object states allows us to establish
a relation between a business process model and object life cycles.

For modeling object life cycles, we use a subset of the UML SM language. This
subset comprises states, with one initial state and one or more final states, and
transitions connecting the states. Transitions that are initiated by a particular
triggering event can be labeled with a trigger label. As our main application is
in a business environment, we choose a simple notation for object life cycles,
without considering composite and concurrent states of state machines.

www.manaraa.com

Consistency of Business Process Models and Object Life Cycles 83

Figure 2 shows two example life cycles for Claim and Settlement object types.
In (a), it can be seen that all objects of type Claim go through state Registered
directly after the initial state and pass through either Fraudulent or Closed
states before they reach a final state. In (b), it is shown that after a Settlement
is Authorized, the payment for the Settlement can either be made in full or in a
number of installments.

Registered

Fraudulent NotFraudulent

Granted Rejected

Settled

Closed

Claim registered

No fraud
Fraud

detected

RejectGrant

Settle

Close
Close

Authorized

Settled

PartiallySettled

Authorize settlement

Settle
in full

Pay out installment

Pay out
installment

Pay final
installment

(a) (b)

LEGEND

initial
state

state transition final
state

Requested

Settlement requested

Fig. 2. Object life cycles: (a) Claim (b) Settlement

In this paper we use the following definition for an object life cycle, adapted
from the definition of a UML State Machine in [14]:

Definition 1 (Object life cycle). Given an object type o, its object life cycle
OLCo = (S, sα, SΩ, L, T) consists of a finite set of states S, where sα ∈ S is the
initial state and SΩ ⊆ S is the set of final states; a finite set of trigger labels L;
a set of labeled transitions T ⊆ S × L ∪ ⊥ × S, where for each transition
t = (s1, l, s2), s1 is the source state and s2 is the target state.

We assume that an object life cycle is well-formed when the initial state has
no incoming transitions, a final state has no outgoing transitions, and all other
states have at least one incoming and at least one outgoing transition.

The Claims handling process model in Figure 1 and the life cycles in Figure 2
are concerned with behavior of the same object types: Claim and Settlement. We
need to define what it means for these models to be consistent and how to check
their consistency. According to an existing methodology for managing consis-
tency of behavioral models [6,8], the consistency problem must first be identified
by determining the overlap between the given models. Then, model aspects that
contribute to the consistency problem must be mapped into a suitable semantic
domain, where consistency conditions can be defined and checked.

An overview of our proposed solution is shown in Figure 3. In Step 1, we make
the overlap between a business process model and object life cycles explicit by
adding object state information to the process model using the inState attribute
of object pins (as in Figure 1). Next in Step 2, we generate a life cycle for each

www.manaraa.com

84 K. Ryndina, J.M. Küster, and H. Gall

Given
BPM

BPM with
object states

Given
OLCs

Generated
OLCs

3. Check consistency
conditions

2. Generate object
life cycles

UML AD

UML SM

1. Make object
states explicit

4. Determine
consistency

BPM = Business Process Model

OLC = Object Life Cycle

Fig. 3. Solution overview

object type used in the process. This generation step takes us to the UML SM as
the semantic domain, where we can then define and check consistency between
the generated life cycles and the given ones (Step 3), which in turn allows us to
determine the consistency between the business process model and the given life
cycles (Step 4). The next two sections describe the generation of life cycles from
a process model and the proposed consistency notions, respectively.

3 Generation of Object Life Cycles

An object life cycle generated from a given business process model for a particular
object type should capture all possible state changes that can occur for objects
of this type in the given process. Initial and final states also need to be identified
for each generated life cycle.

Given a business process model P where each object pin is associated with
a non-empty set of states, we generate an object life cycle for each object type
used in P . For an object type o, we first create an object life cycle OLCoP that
contains only the initial state. Then, for each unique state associated with object
pins of type o, a state is added to OLCoP . Transitions and final states are added
to OLCoP according to the generation rules shown in Figure 4.

Each row in Figure 4 represents a high-level generation rule, where the left-
hand side shows patterns that are matched in the process model P and the right-
hand side shows what is created in the generated object life cycle OLCoP .
Consider for example Rule 2 (stateChange), which is applicable when some
action A has input and output object pins of type o. When states of the output
object pin are not the same as those of the input object pin, we deduce that
action A changes the state of objects of type o. In OLCoP , a transition from each
incoming state to each possible outgoing state for objects of type o is added, for
all cases where the outgoing state is different from the incoming state. These
transitions are labeled A to indicate that they are triggered during the execu-
tion of this action. In Rules 5 and 6, the generated transitions are given special
labels (STARTP and ENDP) to indicate that these transitions are triggered as
the process begins and ends execution, respectively. The rules ensure that the
generated object life cycles are well-formed, provided that all object pins in the
given process model are associated with non-empty state sets. All the generation
rules are explained in detail in a longer version of this paper [13].

www.manaraa.com

Consistency of Business Process Models and Object Life Cycles 85

A

action A creates objects of type o in one of several possible states add transitions from initial state labeled A

A

O
[s11,…,s1m]

s11 s1m

s21 s2n

action A has different incoming and outgoing states for object type o

A AA A

Rule 1 (objectCreation)

Rule 2 (stateChange)

Process model P Object life cycle OLCoP for o

objects of type o passed to final node in several possible states

Rule 4 (finalNode)

add unlabeled transitions to final states

s1

add transition from every incoming
state to every outgoing state labeled A

process P has output parameters of type o

Rule 6 (processOutput)

add transitions to final states labeled ENDP

O
[s1,…,sn]

s1 sn…

A A

O
[s21,…,s2n]

…

…

O
[s1,…,sn]

sn…

x

s1 sn…

…

…
ENDP

O
[s1,…,sn] O ENDP

process P has input parameters of type o

s1

O
[s1,…,sn]

add transitions from initial state labeled STARTP

Rule 5 (processInput)

sn…
O

STARTP STARTP

O
[s1,…,sn]

OR

Rule 3 (finalConsumption)

A

objects of type o are inputs to action A , but are not outputs of A add transitions to final states labeled A

O
[s1,…,sn]

s1 sn…
A A

…

Fig. 4. Rules for object life cycle generation

Figure 5 shows life cycles for Claim and Settlement object types (right-hand
sides of (a) and (b), respectively) generated from the Claims handling process
model in Figure 1 according to the generation rules presented in this section.

In the next section we show how generated object life cycles are used for
defining consistency conditions to establish whether a given process model is
consistent with a given life cycle for a particular object type.

4 Consistency of Object Life Cycles

We identify two consistency notions for a given business process model and
an object life cycle: life cycle compliance and coverage. A given process model
is compliant with a given life cycle for a particular object type, if the process
initiates only those state transitions for objects of this type that are defined in
the given life cycle. Compliance allows objects of the given type to traverse only
a part of their given life cycle in the process. On the other hand, coverage requires
that objects traverse the entire given life cycle in the process, but additional
transitions not defined in the given life cycle may also be incurred in the process.

Depending on the circumstances, one or both of these consistency notions
may be required to hold. For example, if the Claims handling process (Figure 1)
is used for execution and the Claim life cycle (Figure 2 (a)) is referenced by em-
ployees for interpreting the state of Claim objects, both compliance and coverage

www.manaraa.com

86 K. Ryndina, J.M. Küster, and H. Gall

must hold. If the process is not compliant with the life cycle and takes Claim
objects into states not shown in the life cycle or performs different transitions,
this will disconcert the employees. On the other hand, customers will be incor-
rectly informed and thus unsatisfied if the process does not provide a coverage of
the life cycle. An example of this occurs if a customer expects a Claim in state
Granted to eventually reach state Settled according to the given life cycle, but
this never happens in the Claims handling process.

We next give more precise definitions of compliance and coverage, providing
consistency conditions that must hold between a life cycle generated from a
process model for a particular object type and a given life cycle for that type.
We first give two definitions that simplify the expression of consistency conditions
that follow. Definitions 2 and 3 can be applied to any two object life cycles:
OLCo = (S, sα, SΩ, L, T) and OLC′

o = (S′, s′α, S′
Ω, L′, T ′).

Definition 2 (State correspondence). A state correspondence exists between
a state s ∈ S and a state s′ ∈ S′, if and only if one of the following holds: s = s′,
s = sα and s′ = s′α, or s ∈ SΩ and s′ ∈ S′

Ω.

Definition 3 (Transition correspondence). A transition correspondence
exists between a transition t = (s1, s2) ∈ T and a transition t′ = (s3, s4) ∈ T ′

if and only if there are state correspondences between s1 and s3, and between s2

and s4.

In Definition 2, we define a state correspondence between two states in different
object life cycles if the states are equal (i.e. have the same name), if they are
both initial states or they are both final states. In Definition 3, we define a tran-
sition correspondence between two transitions if there are state correspondences
between their sources states and between their target states.

In Definitions 4 and 5, P is a given process model, OLCo = (S, sα, SΩ, L, T)
is a given life cycle for object type o and OLCoP = (SP , sαP , SΩP , LP , TP) is the
life cycle generated from P for o.

Definition 4 (Life cycle compliance). A business process model P is com-
pliant with an object life cycle OLCo if and only if for each transition tP ∈ TP

that is not labeled STARTP or ENDP , there exists a transition t ∈ T such that
there is a correspondence between tP and t.

According to Definition 4, life cycle compliance requires that each transition in
the generated object life cycle has a transition correspondence to some transition
in the given life cycle. However, there are two exceptions to this consistency
condition: transitions labeled STARTP and ENDP in the generated object life
cycle. These transitions are generated when the given process model P has input
or output parameters of object type o. We do not place restrictions on these
transitions, thus allowing objects of type o to be received by and passed from
the given process in any state and not necessarily a state following the initial
state or preceding a final state.

www.manaraa.com

Consistency of Business Process Models and Object Life Cycles 87

Definition 5 (Life cycle coverage). A business process model P provides
a coverage of an object life cycle OLCo if and only if all of the following con-
ditions hold between OLCo and OLCoP : (a) For each transition t ∈ T there
exists a transition tP ∈ TP such that there is a correspondence between t and tP ,
(b) There are no transitions labeled STARTP or ENDP in TP .

Condition (a) in Definition 5 requires every transition in the given object life
cycle to have a transition correspondence to some transition in the generated life
cycle. Furthermore, condition (b) requires that the given process does not have
input or output parameters of the given type, hence objects of this type must
be created and reach their final states within the process boundaries.

We next illustrate the notions of life cycle compliance and coverage using ex-
amples. Figure 5 shows the given object life cycles for the Claim and Settlement
object types on the left and the object life cycles generated from the Claims han-
dling process on the right. Transitions that have a correspondence between them
are marked with the same number, while transitions without a correspondence
are marked with a cross.

Registered

Fraudulent NotFraudulent

Granted Rejected

Settled

Closed

Claim received

No fraud
Fraud

possibility detected

RejectGrant

Settle

Close

Close

Registered

Fraudulent
NotFraudulent

Granted PreRejected

Settled

Closed

Check
for fraud

Check
for fraud

Evaluate

Evaluate

Settle

Close

NeedsReevaluation

Rejected

Notify
rejection

Notify
rejectionEvaluate

Close

Register
new claim

Initiate fraud
investigation

Evaluate

Evaluate

1 1

2

2

3

3

4
4

5
5

6

6

7

7

8
8

9

9

Evaluate

Authorized

Settled

Carry out payment

Prepare settlement

Requested

STARTP

Authorized

Settled

PartiallySettled

Authorize settlement

Settle
in full

Pay out installment

Pay out
installment

Pay final
installment

Requested

Settlement requested

1 1

22

33

GIVEN Claim life cycle
OLCo (o is Claim)

GENERATED Claim life cycle
OLCoP (o is Claim and
P is Claims handling)

(a)

(b)

x

x

x x

xx

x

x x

10
10

GIVEN Settlement life cycle
OLCo (o is Settlement)

GENERATED Settlement life cycle
OLCoP (o is Settlement and

P is Claims handling)

Fig. 5. Consistency of Claim and Settlement object life cycles

The Claim life cycles in Figure 5 (a) satisfy all the consistency conditions
for life cycle coverage. Condition (a) from Definition 5 is satisfied since all the
transitions in the given Claim life cycle have a correspondence to transitions
in the generated Claim life cycle, and condition (b) is satisfied since the gener-
ated Claim life cycle does not contain transitions labeled STARTP or ENDP .

www.manaraa.com

88 K. Ryndina, J.M. Küster, and H. Gall

Therefore, the Claims handling process provides a coverage of the given Claim
life cycle. However, the Claims handling process is not compliant with this life
cycle, due to transitions in the generated life cycle without transition correspon-
dences to transitions in the given life cycle. Figure 5 (b) shows that the Claims
handling process is compliant with the given Settlement life cycle, but does not
provide a coverage for it.

5 Related Work

A related research area is object life cycle inheritance, where consistent special-
ization of behavior is required (see e.g. [5,11,14]). Currently, our main goal is to
establish a link between business process models and object life cycles, and life
cycle inheritance is not in focus. However, sometimes it may be required that
the relation between a given process model and an object life cycle is a certain
type of specialization. Thus, it would be beneficial for our approach to make use
of the consistency notions already defined for life cycle inheritance.

Another related area is synthesis of state machines from scenarios [18,16],
where scenario specifications are used to generate state machines for the ob-
jects that participate in these scenarios. There are several significant differences
between process models and scenarios however, e.g. process models do not gen-
erally describe alternative scenarios and show the flow of objects between tasks
rather than interaction between objects via messages modeled in scenarios. In
state machine synthesis, it is possible that a synthesized state machine contains
so-called implied scenarios [15,12], i.e. behaviors that are not valid with respect
to the original scenario specifications. A similar phenomenon can occur in our
life cycle generation step, which we plan to investigate further as future work.

Our consistency notions are related to the concepts of equivalence and re-
finement of formal process specifications [7]. However, as discussed in [17], it is
challenging to apply the existing definitions to languages such as UML AD and
SM, as they do not have an agreed formal semantics. As future work we intend
to establish a relation of our consistency notions to the existing equivalence and
refinement definitions and investigate which are most appropriate in practice.

6 Conclusion and Future Work

Consistency of business process models and object life cycles needs to be en-
sured in situations where process models manipulate business objects with an
explicitly modeled life cycle. In this paper we have presented our approach to
establishing this consistency. Our main contributions include a precise definition
of two consistency notions, namely life cycle compliance and coverage, and a
supporting technique for the generation of object life cycles from process models
that enables consistency checking. With regards to tool support, we have devel-
oped a prototype as an extension to the IBM WebSphere Business Modeler [1]
that allows us to capture object states in business process models, generate life
cycles from process models and check the consistency conditions.

www.manaraa.com

Consistency of Business Process Models and Object Life Cycles 89

As future work, we intend to validate the proposed approach using a larger
case study. We also plan to extend the approach to enable compliance and cov-
erage checking for several process models that use objects of the same type and
a life cycle for this type. Further future work includes an investigation of im-
plied scenarios in the context of our life cycle generation and establishing a clear
relation between our proposed consistency notions and the existing equivalence
and refinement definitions.

References

1. IBM WebSphere Business Modeler. http://www-306.ibm.com/software/integra
tion/wbimodeler/.

2. ACORD Life & Annuity Standard. ACORD Global Insurance Standards, Final
Version 2.13.00, September 2005.

3. UML2.0 Superstructure, formal/05-07-04. OMG Document, 2005.
4. IBM Industry Models for Financial Services, The Information Framework (IFW)

Process Models. IBM General Information Manual, 2006.
5. J. Ebert and G. Engels. Specialization of Object Life Cycle Definitions. Fach-

berichte Informatik 19/95, University of Koblenz-Landau, 1997.
6. G. Engels, J. M. Küster, L. Groenewegen, and R. Heckel. A Methodology for

Specifying and Analyzing Consistency of Object-Oriented Behavioral Models. In
Proceedings of the 8th European Software Engineering Conference - ESEC’01, pages
186–195. ACM Press, 2001.

7. A.-W. Fayez. Comparative Analysis of the Notions of Equivalence for Process Spec-
ifications. In Proceedings of the 3rd IEEE Symposium on Computers & Communica-
tions - ISCC’98, page 711, Washington, DC, USA, 1998. IEEE Computer Society.

8. J. M. Küster. Consistency Management of Object-Oriented Behavioral Models.
PhD thesis, University of Paderborn, March 2004.

9. J. M. Küster and J. Stehr. Towards Explicit Behavioral Consistency Concepts in
the UML. In Proceedings of the 2nd International Workshop on Scenarios and
State Machines: Models, Algorithms and Tools - ICSE’03, 2003.

10. B. Litvak, S. Tyszberowicz, and A. Yehudai. Behavioral Consistency Validation of
UML Diagrams. 1st International Conference on Software Engineering and Formal
Methods - SEFM’03, page 118, 2003.

11. M. Schrefl and M. Stumptner. Behavior-Consistent Specialization of Object Life Cy-
cles. ACM Transactions on Software Engineering and Methodology, 11(1):92–148,
2002.

12. H. Muccini. An Approach for Detecting Implied Scenarios. In Proceedings of
the Workshop on Scenarios and State Machines: Models, Algorithms, and Tools -
ICSE’02, 2002.

13. K. Ryndina, J. M. Küster, and H. Gall. Consistency of Business Process Models
and Object Life Cycles. In Proceedings of the 1st Workshop on Quality in Model-
ing co-located with MoDELS 2006, Technical report 0627, Technische Universiteit
Eindhoven, 2006.

14. M. Stumptner and M. Schrefl. Behavior Consistent Inheritance in UML. In Pro-
ceedings of Conceptual Modeling - ER 2000, volume 1920 of LNCS, pages 527–542.
Springer-Verlag, 2000.

15. S. Uchitel, J. Kramer, and J. Magee. Detecting Implied Scenarios in Message
Sequence Chart Specifications. In Proceedings of European Software Engineering
Conference - ESEC/FSE’01, 2001.

www.manaraa.com

90 K. Ryndina, J.M. Küster, and H. Gall

16. S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models from Scenar-
ios. IEEE Transactions on Software Engineering, 29(2):99–115, 2003.

17. M. von der Beeck. Behaviour Specifications: Equivalence and Refinement Notions.
In Visuelle Verhaltensmodellierung verteilter und nebenläufiger Software-Systeme,
8. Workshop des Arbeitskreises GROOM der GI Fachgruppe 2.1.9 Objektorientierte
Software-Entwicklung, Universität Münster, 2000. Technical report 24/00-I.

18. J. Whittle and J. Schumann. Generating Statechart Designs from Scenarios.
In Proceedings of the 22nd International Conference on Software Engineering -
ICSE’00, pages 314–323, New York, NY, USA, 2000. ACM Press.

www.manaraa.com

A Qualitative Investigation of
UML Modeling Conventions

Bart Du Bois1, Christian F.J. Lange2,
Serge Demeyer1, and Michel R.V. Chaudron2

1 Lab On REengineering, University of Antwerp, Belgium
{Bart.DuBois,Serge.Demeyer}@ua.ac.be

2 Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven
{C.F.J.Lange,M.R.V.Chaudron}@tue.nl

Abstract. Analogue to the more familiar notion of coding conventions,
modeling conventions attempt to ensure uniformity and prevent common
modeling defects. While it has been shown that modeling conventions can
decrease defect density, it is currently unclear whether this decreased de-
fect density results in higher model quality, i.e., whether models created
with modeling conventions exhibit higher fitness for purpose.

In a controlled experiment1 with 27 master-level computer science
students, we evaluated quality differences between UML analysis and
design models created with and without modeling conventions. We were
unable to discern significant differences w.r.t. the clarity, completeness
and validity of the information the model is meant to represent.

We interpret our findings as an indication that modeling conventions
should guide the analyst in identifying what information to model, as
well as how to model it, lest their effectiveness be limited to optimizing
merely syntactic quality.

1 Introduction

In [1], a classification of common defects in UML analysis and design models
is discussed. These defects often remain undetected and cause misinterpreta-
tions by the reader. To prevent these defects, modeling conventions have been
composed that, similar to the concept of code conventions, ensure a uniform
manner of modeling [2]. We designed a pair of experiments to validate the ef-
fectiveness of using such modeling conventions, focusing on their effectiveness
w.r.t. respectively (i) defect prevention; and (ii) model quality. We reported on
the prevention of defects in [3]. Our study of the effect of modeling conventions
on model quality forms the subject of this paper.

In the first experiment, we evaluated how the use of modeling conventions for
preventing modeling defects affected defect density and modeling effort [3]. These
modeling conventions are enlisted in Appendix A, and have been discussed pre-
viously in [1]. This set of 23 conventions has been composed through a literature

1 A replication package is provided at http://www.lore.ua.ac.be/Research/Artefacts

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 91–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

92 B. Du Bois et al.

review and through observations from industrial case studies, and concern ab-
straction, balance, completeness, consistency, design, layout and naming. These
conventions are formative, in that they focus on specifying how information
should be modeled, rather than specifying what should be modeled.

Our observations on 35 three person modeling teams demonstrated that, while
the use of these modeling conventions required more modeling effort, the defect
density of resulting UML models was reduced. However, this defect density re-
duction was not statistically significant, meaning that there is a (small) possi-
bility, albeit small, that the observed differences might be due to chance.

This paper reports on the second experiment, observing differences in repre-
sentational quality between the models created in the first experiment. We define
representational quality of a model as the clarity, completeness and validity of the
information the model is meant to represent. Typical flaws in representational
quality are information loss, misinformation, and ambiguity or susceptibility to
misinterpretation. This study investigates whether models created using com-
mon modeling conventions exhibit higher representational quality.

The paper is structured as follows. The selected quality framework is elabo-
rated in section 2. The set-up of the experiment is explained in section 3, and
the analysis of the resulting data is discussed and interpreted in section 4. We
analyze the threats to validity in section 5. Finally, we conclude in section 6.

For space considerations, the description of the experiment has been reduced
to its essence. A more elaborate discussion of the experiment is provided in [4].

2 Evaluating Model Quality

Through a literature review of quality models for conceptual models, we se-
lected Lindland’s framework for its focus on clarity, completeness and validity.
Lindland’s framework relates different aspects of modeling to three linguistic
concepts: syntax, semantics and pragmatics [5]. These concepts are described as
follows (citing from [5]):

Syntax relates the model to the modeling language by describing relations
among language constructs without considering their meaning.

Semantics relates the model to the domain by considering not only syntax, but
also relations among statements and their meaning.

Pragmatics relates the model to the audience’s interpretation by considering
not only syntax and semantics, but also how the audience (anyone involved
in modeling) will interpret them.

These descriptions of the concepts of syntax, semantics and pragmatics refer
to relationships. The evaluation of these relationships gives rise to the notion
of syntactic, semantic and pragmatic quality. We note that the effect of UML
modeling conventions on syntactic quality has been the target of our previous
experiment [3], and is therefore not included in this study.

In [6], Lindland’s quality framework is extended to express one additional
quality attribute. Social quality evaluates the relationship among the audience

www.manaraa.com

A Qualitative Investigation of UML Modeling Conventions 93

interpretation, i.e. to which extent the audience agrees or disagrees on the state-
ments within the model.

With regard to representational quality, we are less interested in the rela-
tionship between the model and the audience’s interpretation – indicated by
pragmatic quality – than in the relationship between the domain and the audi-
ence’s interpretation, as the former is unrelated to the information the model
is meant to represent. Accordingly, we will not observe pragmatic quality, but
instead introduce an additional quality attribute, communicative quality, that
targets the evaluation of the audience’s interpretation of the domain.

2.1 Measuring Model Quality

Lindland’s quality framework evaluates the relationships between model, mod-
eling domain and interpretation using the elementary notion of a statement. A
statement is a sentence representing one property of a certain phenomenon [6].
Statements are extracted from a canonical form representation of the language,
which in UML, is specific to each diagram type. An example of a statement in
a use case diagram is the capability of an actor to employ a feature.

The set of statements that are relevant and valid in the domain are noted as
D, the set of statements that are explicit in the model as ME , and the set of
statements in the interpretation of an interpreter i are symbolized with Ii. We
say that a statement is explicit in case it can be confirmed from that sentence
without the use of inference. Using these three sets, indicators for semantic
quality (and also pragmatic quality, that we do not include in this study) have
been defined that are similar to the concepts of recall and precision:

Semantic Completeness (SC) is the ratio of the number of modeled domain
statements |ME ∩ D| and the total number of domain statements |D|.

Semantic Validity (SV) is the ratio of the number of modeled domain state-
ments |ME ∩ D| and the total number of model statements |ME |.

Krogstie extended Lindland’s quality framework through the definition of so-
cial quality [6]. The single proposed metric of social quality is:

Relative Agreement among Interpreters (RAI) is calculated as the num-
ber of statements in the intersection between the statements in the interpre-
tations of all n interpreters |⋂∀i,j∈[1,n] Ii ∩ Ij |.

Similar to semantic quality, we introduce the following metrics for commu-
nicative quality:

Communicative Completeness (CC) is the ratio of the number of recognized
modeled domain statements |Ii ∩ME ∩D| and the total number of modeled
domain statements |ME ∩ D|.

Communicative Validity (CV) is the ratio of the number of recognized mod-
eled domain statements |Ii ∩ ME ∩ D| and the total number of statements
in the interpretation of interpreter i |Ii|.

www.manaraa.com

94 B. Du Bois et al.

Communicative completeness and validity respectively quantify the extent to
which information has been lost or added during modeling.

The difficulty in applying the metrics for semantic, social and communica-
tive quality mentioned above lies in the identification of the set of model state-
ments (ME), and interpretation statements (Ii). In contrast, the set of domain
statements (D) is uniquely defined and can reasonably be expected to have a
considerable intersection with the set of model and interpretation statements.
Accordingly, we choose to estimate the sets of domain statements, model state-
ments and interpretation statements, by verifying their intersection with a se-
lected set of domain statements (Ds).

Semantic validity cannot be approximated in this manner, as it requires
an estimate of the set of statements that lie outside the set of domain state-
ments (|ME \ D|). Nonetheless, the resulting set of estimates for semantic, so-
cial and communicative quality allows to assess typical representational quality
flaws as information loss (semantic and communicative completeness estimates),
misinformation (communicative validity estimate) and misinterpretation (social
quality estimate).

3 Experimental Set-Up

Using the classical Goal-Question-Metric template, we describe the purpose of
this study as follows: Analyze UML models for the purpose of evaluation of
modeling conventions effectiveness with respect to the representational quality
of the resulting model from the perspective of the analyst/designer in the
context of master-level computer science student.

Using our refinement of representational model quality presented in the pre-
vious section, we define the following null hypotheses:

H0,SeQ – UML analysis and design models composed with or without modeling
conventions do not differ w.r.t. semantic quality.

H0,SoQ – UML analysis and design models composed with or without modeling
conventions do not differ w.r.t. social quality.

H0,CoQ – UML analysis and design models composed with or without modeling
conventions do not differ w.r.t. communicative quality.

3.1 Experimental Design

In this study, we use a three-group posttest-only randomized experiment, con-
sisting of a single control group and two treatment groups:

noMC – no modeling conventions. This group of subjects, referred to as
the control group were given UML analysis and design models that were
composed without modeling conventions.

MC – modeling conventions. The subjects in this treatment group received
UML analysis and design models that were composed using the list of mod-
eling conventions enlisted in Appendix A.

www.manaraa.com

A Qualitative Investigation of UML Modeling Conventions 95

MC+T – tool-supported modeling conventions. Subjects in this treatm-
ent group received UML analysis and design models that were composed
using both a list of modeling conventions and a tool to support the detection
of their violation.

3.2 Experimental Subjects, Tasks and Objects

The experiment was performed using pen and paper only. Each student was pro-
vided with (i) a hardcopy of all diagrams of a single model; (ii) a questionnaire;
and (iii) a vocabulary.

A total of 27 MSc computer-science students participated in the controlled
experiment. This experiment was performed in the end of 2005 at the University
of Mons-Hainaut and at the University of Antwerp (both in Belgium). We eval-
uated the subjects’ experience with the different types of UML diagrams using a
questionnaire. All subjects had practical (although merely academic) experience
with the diagrams required to answer the questions.

The questionnaire contained a single introduction page that described the
task. Another explanatory page displayed one example question and its solu-
tion, elaborating on the steps to be applied. The example question, illustrated in
Table 1, asks the participant to verify whether a given UML analysis and design
model confirms a given statement. As an argument for the confirmation of a
statement, the participant should be able to indicate a diagram fragment dictat-
ing that the statement should hold. In case such a fragment can be found, the
participant annotates the fragment with the question number.

Table 1. Example question and supporting diagram fragment

Nr Statement Confirmed
Not

Confirmed

1
The software system should
support querying employee
information.

O O

Employee portal

add, edit, query,
remove employee

information

manage
timesheets

view employee
information

Accounting
departmentEmployee

1

The main part of the questionnaire asked subjects to evaluate whether a given
statement was explicitly confirmed by the given model. Only two options were
possible, being either “confirmed”, or “not confirmed”. The questions2 asked
allow to estimate semantic, social and communicative quality. We have identified
over 60 statements that are relevant and valid in the domain, derived from the
informal requirement specification for which the subjects of the first experiment
composed the UML models. From this set of 60 statements, a selection of 22
statements was made, comprising the set of selected domain statements Ds.

For each experimental group (noMC, MC, MC + T), a representative set of
three UML analysis and design models was selected from the set of output models

2 An elaborate discussion on the different categories of questions is provided in [4].

www.manaraa.com

96 B. Du Bois et al.

of the first experiment. The selected models serve as experimental objects, and
were representative w.r.t. syntactic quality, defined as the density of modeling
defects present in the model. These UML models – modeling a typical application
in the insurance domain – consisted of six different types of UML diagrams used
for analysis and design. The frequency of each of the diagram types in each
model is provided in Table 2.

Table 2. Frequency of the diagram types in each model

noMC MC MC+T
type no2 no4 no8 MC2 MC4 MC5 MC + T4 MC + T6 MC + T10

Class Diagram 6 1 6 8 1 1 11 1 5
Package Diagram 1 0 0 0 0 0 0 0 1

Collaboration Diagram 0 0 0 0 0 0 0 1 0
Deployment Diagram 0 0 0 0 0 0 1 1 1

Use Case Diagram 7 1 5 0 3 5 6 5 1
Sequence Diagram 6 26 10 3 39 14 8 56 15

total 20 28 16 11 43 20 26 23 64

As the different models used synonyms for some concepts, a glossary was
provided indicating which names or verbs are synonyms.

3.3 Experimental Procedure

The procedure for this experiment consisted of two major phases. First, in prepa-
ration of the experiment, the semantic quality of each selected model was as-
sessed. Second, two executions of the experimental procedure (runs) were held
to observe subjects performing the experimental task described in the previous
subsection, thereby assessing the models’ communicative and social quality.

Assessment of semantic quality. This assessment was performed by three eval-
uators, and did not require the participation of experimental subjects. The three
evaluators were the first two authors of this paper, and a colleague from the first
authors’ research lab. After an individual assessment, conflicts were resolved re-
sulting in agreement on the recognition of each selected domain statement in
each model.

This evaluation procedure provided the data to calculate the semantic com-
pleteness and semantic validity of each of the nine selected models.

Assessment of social and communicative quality. Each experimental run was
held in a classroom, and adhered to the following procedure. Subjects were first
randomized into experimental groups, and then provided with the experimental
material. Subjects were asked to write their name on the material, to take the
time to read the instructions written on an introduction page, and finally to
complete the three parts of the questionnaire.

No time restrictions were placed on the completion of the assignment.

www.manaraa.com

A Qualitative Investigation of UML Modeling Conventions 97

3.4 Experimental Variables

The independent variable subject to experimental control is entitled modeling
convention usage, indicating whether the model was composed without mod-
eling conventions (noMC), with modeling conventions (MC) or with modeling
conventions and a tool to detect their violations (MC+T). The observed depen-
dent variables are the estimators for semantic completeness (SC), communicative
completeness (CC), communicative validity (CV) and relative agreement among
interpreters (RAI), as defined in section 2.1. As these variables are all calculated
as ratios, we express them in percentage.

4 Data Analysis

Table 3 characterizes the experimental variables across the experimental groups.

Table 3. Statistics of the experimental variables

Overall
Hyp. DV mean MCU1 Mean StdDev Min Max H(2) p-value
H0,SeQ SC 62.6% noMC 66.7% 13.9% 54.5% 81.8% 0.4786 .7872

MC 59.1% 9.1% 50.0% 68.2%
MC+T 62.1% 6.9% 54.5% 68.2%

H0,SoQ RAI 59.6% noMC 66.7% 15.6% 50.0% 81.8% 1.1556 .5611
MC 59.1% 20.8% 36.4% 77.3%

MC+T 53.0% 17.2% 40.1% 72.7%
H0,CoQ CC 76.9% noMC 82.7% 14.1% 61.0% 100.0% 2.7298 .2554

MC 74.5% 16.0% 36.0% 93.0%
MC+T 72.5% 13.1% 53.0% 92.0%

CV 85.0% noMC 87.0% 7.9% 75.0% 100.0% 1.5235 .4668
MC 85.9% 10.6% 60.0% 100.0%

MC+T 81.5% 8.9% 69.0% 92.0%
1Modeling Convention Usage.

Semantic Completeness (SC) – The semantic completeness of models
composed without modeling conventions was somewhat higher, within a margin
of 10% (see top left figure in Table 4). I.e., the models from group noMC de-
scribed slightly more modeling domain statements. However, the noMC group
also exhibits a larger standard deviation.

Relative Agreement among Interpreters (RAI) – There was consider-
able higher (about 14%) agreement among interpreters of the models composed
without modeling conventions (see top right figure in Table 4). However,we also
observed considerable standard deviations in Table 3 in all treatment groups.

Communicative Completeness (CC) – The communicative completeness
of models composed without modeling conventions was somewhat higher (around
10%) than that of models composed with modeling conventions.

www.manaraa.com

98 B. Du Bois et al.

Communicative Validity (CV) – The communicative validity is approxi-
mately equal between models composed with and without modeling conventions,
as illustrated in in the bottom right figure in Table 4).

Table 4. Variation of SC, RAI, CC and CV across experimental groups

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

SC

M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

SC

M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

RAI
M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

RAI
M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

CC

M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

CC

M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

CV

M
C
U

M
C
+
T

M
C

no

0.0 0.2 0.4 0.6 0.8 1.0

CV

M
C
U

To verify whether the differences among experimental groups are statistically
significant, Kruskal-Wallis test results are appended to Table 3. This test is a
non-parametric variant of the typical Analysis of Variance (ANOVA), and is
more robust with regard to assumptions about the distribution of the data, as
well as unequal sample sizes (#noMC=10,#MC=9,#MC + T=8). Moreover,
the assumptions of at least an ordinal measurement level, independent groups
and random sampling were also satisfied.

Table 3 indicates that the group differences concerning semantic, social and
communicative quality are not statistically significant at the 90% level. Accord-
ingly, we must accept the hypotheses stating that the UML analysis and design
models composed with or without modeling conventions do not differ w.r.t. se-
mantic, social and communicative quality.

5 Threats to Validity

Construct Validity is the degree to which the variables used measure the concepts
they are to measure. We have decomposed representational quality, the main
concept to be measured, into semantic, social and communicative quality, and
have argued their proposed approximations.

Internal Validity is the degree to which the experimental setup allows to accu-
rately attribute an observation to specific cause rather than alternative causes.

www.manaraa.com

A Qualitative Investigation of UML Modeling Conventions 99

Particular threats are due to selection bias. The selection of statements from the
domain Ds could not have introduced systematic differences, and the selection
of model was performed as to be representative w.r.t. syntactic quality.

External Validity is the degree to which research results can be generalized
outside the experimental setting or to the population under study. The set of
modeling conventions was composed after a literature review of modeling con-
ventions for UML, revealing design, syntax and diagram conventions. Our set of
modeling conventions contains instances of these three categories.

6 Conclusion

Based on the results of this experiment, we conclude that UML modeling conven-
tions focusing on the prevention of common UML modeling defects (as reported
in [1]) are unlikely to affect representational quality.

We interpret our findings as an invitation to study the application of modeling
conventions of a different nature. Conventions are needed that clarify which types
of information are relevant to particular future model usages. Such modeling
conventions might suggest the modeling of a type of information (e.g., features,
concepts, interactions, scenarios) consistently in a particular (set of) diagram
type(s). We hypothesize that this uniform manner of modeling different types of
information is more likely to optimize semantic and communicative quality, as
these types of information are the subject of their evaluation.

References

[1] C.F.J. Lange and M.R.V. Chaudron. Effects of defects in UML models - an experi-
mental investigation. In ICSE ’06: Proceedings of the 28th International Conference
on Software Engineering, pages 401–411, 2006.

[2] C.F.J. Lange, M.R.V. Chaudron, and Johan Muskens. In practice: UML software
architecture and design description. IEEE Softw., 23(2):40–46, 2006.

[3] C.F.J. Lange, Bart Du Bois, M.R.V. Chaudron, and Serge Demeyer. Experimen-
tally investigating the effectiveness and effort of modeling conventions for the UML.
In O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pages 27–41, 2006.

[4] Bart Du Bois, C.F.J. Lange, Serge Demeyer and M.R.V. Chaudron. A Qualita-
tive Investigation of UML Modeling Conventions First International Workshop on
Quality in Modeling at MoDELS 2006

[5] Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. Understanding quality in
conceptual modeling. IEEE Softw., 11(2):42–49, 1994.

[6] John Krogstie. Conceptual Modeling for Computerized Information Systems Sup-
port in Organizations. PhD thesis, University of Trondheim, Norway, 1995.

[7] Friday, November 10, 2006 at 5:06 pmWilliam R. Shadish, Thomas D. Cook, and
Donald T. Campbell. Experimental and Quasi-Experimental Designs for General-
ized Causal Inference. Houghton Mifflin, 2002.

A Modeling Conventions

Table 5 enlists the modeling conventions employed in a previous experiment.
These conventions were used by two of the experimental groups (MC and

www.manaraa.com

100 B. Du Bois et al.

MC + T) while composing UML analysis and design models. As the result-
ing models were used in this experiment, it is relevant to recapitulate these
conventions.

Table 5. Modeling Conventions

Category ID Convention
Abstraction 1 Classes in the same package must be of the same abstraction

level.
2 Classes, packages and use cases must have unique names.
3 All use cases should cover a similar amount of functionality.

Balance 4 When you specify getters/setters/constructors for a class, spec-
ify them for all classes.

5 When you specify visibility somewhere, specify it everywhere.
6 Specify methods for the classes that have methods! Don’t make

a difference in whether you specify or don’t specify methods as
long as there is not a strong difference between the classes.

7 Idem as 6 but for attributes.
Completeness 8 For classes with a complex internal behavior, specify the internal

behavior using a state diagram.
9 All classes that interact with other classes should be described

in a sequence diagram.
10 Each use case must be described by at least one sequence dia-

gram.
11 The type of ClassifierRoles (Objects) must be specified.
12 A method that is relevant for interaction between classes should

be called in a sequence diagram to describe how it is used for
interaction.

13 ClassifierRoles (Objects) should have a role name.
Consistency 14 Each message must correspond to a method (operation).
Design 15 Abstract classes should not be leafs.

16 Inheritance trees should not have no more than 7 levels.
17 Abstract classes should not have concrete superclasses.
18 Classes should have high cohesion. Don’t overload classes with

unrelated functionality.
19 Your classes should have low coupling.

Layout 20 Diagrams should not contain crossed lines (relations).
21 Don’t overload diagrams. Each diagram should focus on a spe-

cific concept/problem/functionality/...
Naming 22 Classes, use cases, operations, attributes, packages, etc. must

have a name.
23 Naming should use commonly accepted terminology, be non-

ambiguous and precisely express the function/role/characteristic
of an element.

www.manaraa.com

Model Driven Development of Advanced User
Interfaces (MDDAUI) –

MDDAUI’06 Workshop Report

Andreas Pleuß1, Jan van den Bergh2, Stefan Sauer3, Heinrich Hußmann1,
and Alexander Bödcher4

1 University of Munich, Germany
{Andreas.Pleuss, Heinrich.Hussmann}@ifi.lmu.de

2 Hasselt University, Belgium
Jan.VandenBergh@uhasselt.be

3 University of Paderborn, Germany
sauer@upb.de

4 University of Kaiserslautern, Germany
boedcher@mv.uni-kl.de

Abstract. This paper reports on the 2nd Workshop on Model Driven
Development of Advanced User Interfaces (MDDAUI’06) held on Octo-
ber 2nd, 2006 at the MoDELS’06 conference in Genova, Italy. It briefly
describes the workshop topic and provides a short overview on the work-
shop structure. In the main part it introduces the four topics discussed in
the workshop’s afternoon sessions and summarizes the discussion results.

1 Workshop Topic

The user interface of an application is often one of the core factors determining
its success. While model-based user interface development is an important line
of research in the human-computer-interaction (respectively human-machine-
interaction) community, model-driven application development is an important
area in the software engineering community. This workshop aims at integrating
the knowledge from both domains, leading to a model-driven development of user
interfaces. Thereby, the focus of the workshop lies on advanced user interfaces
corresponding to the current state-of-the-art in human-computer-interaction,
such as multimedia or context-sensitive user interfaces or multimodal interaction
techniques.

The workshop builds up on the results of the previous edition [1, 2], which pro-
vided an overview on existing work and the challenges in the area of MDDAUI.
On that base, the current workshop aims to go more into specific details and
specific challenges on the field. This includes e.g. more specific models for ad-
vanced UIs, a stricter compliance to the concepts from model-driven engineering,
explicit transformations between UI models which in particular provide concepts
to ensure the usability of resulting UIs, and additional integration of informal
techniques to achieve a better integration of usability and artistic design into
the model-driven development process.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 101–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

102 A. Pleuß et al.

2 Submissions, Participants, and Program

Interested participants were asked to submit a short paper of four pages length
in double-column format. We received 18 submission from which 12 have been
accepted. The resulting spectrum of participants included people from different
areas in human-computer-interaction and software engineering. Besides people
from academia, there were also participants working in industrial context.

The workshop took one day during the MoDELS’06 conference. In the morning
sessions all accepted papers were presented either at short or as long presenta-
tions. The afternoon was mainly reserved for discussions. The detailed program
and the preliminary proceedings including all accepted papers can be found on
the workshop webpage [3]. Official proceedings will be available at [4].

3 Workshop Discussions

After the paper presentations four discussion groups were formed around the
following topics:

– Co-development of Models and Visualizations
– Runtime Interpretation of UI Models
– MDDAUI and Usability
– An Integrated Metamodel for MDDAUI

In the following we summarize the discussion results of these discussion groups,
which were also presented at the end of the workshop.

3.1 Co-development of Models and Visualizations

In the context of the discussion, visualization means the concrete visual appear-
ance of the user interface. The user interface development process involves dif-
ferent developer groups, like graphic designer or usability experts. Some of them
usually work on concrete visualizations like sketches, hi-fi and low-fi prototypes.
Thus, their results have to be synchronized with the models which provides the
central information in an abstract way for all parties involved in the development
process.

As a consequence, there is a need for tools and transformations which allow
a bottom-up process, where the abstract information for the models is derived
from the various visualizations. Currently, most model-driven approaches focus
on the top-down process. Furthermore, it must be possible to update the visual-
izations when changes on the model occur. This leads to the need of a round-trip
engineering between models and different kinds of visualizations even in an early
stage of the development process.

Finally, the discussion addressed the issue that the relative importance of the
models versus visualizations changes for different kinds of applications. Visual
appearance of the user interface is especially important in applications for con-
sumer products or in multimedia applications like in the automotive sector. On

www.manaraa.com

Model Driven Development of Advanced User Interfaces 103

...

Keeping 2 models in sync

Deriving one model from another

Mapping Models

E.g.: Does it make sense to

(e.g. Task, AUI, CUI, FUI)
Use the same levels of abstraction at design time and runtime?

On which level (AUI, CUI, ...) do we adapt?

How to do the reasoning?

Mixed

Adaptation on the Client

Request-Response-Pattern (e.g., Web server)Adaptation on the Server

Architecture

How to implement it?

Runtime support on multiple platform

Performance
Disadvantages, Challenges

Gives you the ability to do some kind of reasoning

Implementation of "order independence" (do ABC in any order)

Model is a good thing to work on

Flexibility

"Plastic" Interface
Context Adaptativity

Advantages, Motivation

Criteria?Where does it make sense?

Service-oriented Architecture (SOA)

Smart Home
Applications that reconfigure themselves at runtime

Where to use?

Part / Part

Full run time

Fully design time

SpectrumMisc

What is runtime interpretation?

have task models at runtime?

Runtime Interpretation
of UI models

Fig. 1. Overview on the different aspects of runtime interpretation of user interface
models

the other hand e.g. for a corporate intranet the flexible adaptation to the con-
tinuously changing information seems more important than the concrete visual
appearance of the user interface.

3.2 Runtime Interpretation of UI Models

In the context of our discussion, runtime interpretation means that the abstract
information from the model is kept during the execution of the modelled applica-
tion and is interpreted by a specific runtime environment. This is necessary e.g.
in ubiquituous computing scenarios where the user interface must be adapted
at runtime to the context of the application, e.g. the currently available target
devices. In the discussion we aimed for an overview on the current state-of-the
art and the challenges in this area. As a result, we created the mind map shown
in figure 1.

3.3 MDDAUI and Usability

A large part of the discussion in this group focused on identification of chal-
lenges to create usable interactive applications within industrial settings. A first
challenge is the fact that the people involved with the design of these interactive
applications are faced with some design decisions that are made without their

www.manaraa.com

104 A. Pleuß et al.

involvement, especially regarding the hardware platform. For example, decisions
regarding hardware in the automotive industry are largely driven by artistic de-
signers and management decisions based on perceived market needs or desires.

Another important challenge is that the target platform can change during
the design process, for example due to market changes. These changes can have
a enormous impact on the design of the interactive application, especially for
embedded applications where only a limited number of physical controls can
be used and strong ergonomic rules apply to the usage of these controls. For
example, a decision to replace a rotation knop for navigating through menus
by a touch screen in a car can require a complete redesign of the user interface
structure caused by the ergonomic rules that are associated with these controls.
Using a higher level of abstraction through models may make it easier to cope
with these changing hardware platforms.

The usage of models, however, poses some challenges since the teams that
design interactive applications are very heterogenous. It therefore is a challenge
to communicate designs, especially in abstract models, to all that are involved
in the design of interactive applications. One possible path to cope with the
problem that was considered to be worth further investigation is the usage of a
domain-specific language with a specialized concrete syntax for the (abstract)
models.

3.4 An Integrated Metamodel for UI Development

The discussion started with the idea, that most of the different approaches for
different kinds of (advanced) user interfaces partially base on the same or very
similar modeling concepts (for the core properties of a user interface) and par-
tially very different concepts (e.g. for a specific property of the UI like context-
sensitiveness, multimedia context, 3D, or a specific modality). Concepts from
model-driven engineering – like explicit metamodels, operations on metamodels
and explicit transformations – could perhaps help to define an overall frame-
work to capture these commonalities and variabilities. This could result e.g. in
an overall metamodel or a family of languages, which then allows the flexible
combination of different concepts (metamodels) according to the properties of
the user interface to be built. For example, one can then select the required
models to develop a user interface which is context-sensitive but also includes
3D-animations.

To get a feeling about how this could look like, we first collected the most
common models for UI development known from the literature. Then we dis-
cussed on alternatives how to integrate these different models. Two approaches
were considered: The first is the creation of a core metamodel which is common
to all MDDAUI approaches, complemented with extensions to cope with specific
concerns. However, it seems difficult to agree on such a core metamodel. The
second approach is creating metamodels for all MDDAUI approaches comple-
mented with various operations on these metamodels. Examples of such opera-
tions are the transformations from one metamodel into another one or merging

www.manaraa.com

Model Driven Development of Advanced User Interfaces 105

two metamodels. This allows a flexible and modular specification of models and
transformations and even the co-existence of an arbitrary number of alternative
approaches.

For the further discussion we decided for the second approach. A collection of
metamodels and transformations can be realized by metamodel repositories or
’metamodel zoos’ as proposed by several initiatives on the MoDELS’06 confer-
ence. In the last part of the discussion we structured the collected models into
packages, which could be for example: A package Domain which contains mod-
els for the application logic, a package Context which contains models for the
context of the user interface, a package Behavior which contains models for the
behavior of the user interface and a package Appearance which contains models
for the structure and the concrete layout of the user interface.

4 Conclusion

The growing number of workshop participants from different communities indi-
cates the high relevance of model-driven user interface development. The work-
shop’s results show that the involved research areas, software engineering and
human-computer-interaction, can both strongly benefit from the integration of
their knowledge. In the context of the workshop topic, the workshop contribu-
tions show on the one hand that applying concepts and standards from model-
driven engineering – like explicit metamodels and transformations or round-
trip-engineering techniques – can seriously contribute to the solution of current
challenges in user interface development. On the other hand, the area of model-
driven engineering benefits not only through the consideration of knowledge from
human-computer-interaction itself, but also through new insights and challenges
arising from the complex application domain of user interface development.

Acknowledgements. We would like to thank the workshop participants for
their high quality contributions as well as the program committee members for
their help and the valuable reviews.

References

[1] Pleuß, A., Van den Bergh, J., Hußmann, H., Sauer, S.: Workshop Report: Model
Driven Development of Advanced User Interfaces (MDDAUI). In: Jean-Michel
Bruel (Ed.): Satellite Events at the MoDELS 2005 Conference, LNCS 3844,
Springer 2006

[2] Pleuß, A., Van den Bergh, J., Hußmann, H., Sauer, S.: Proceedings of Model Driven
Development of Advanced User Interfaces. CEUR Workshop Proceedings, Vol. 159,
2005, http://ceur-ws.org/Vol-159

[3] Second International Workshop on Model Driven Development of Ad-
vanced User Interfaces (MDDAUI 2006), Workshop Webpage, 2006
http://planetmde.org/mddaui2006/

[4] Pleuß, A., Van den Bergh, J., Hußmann, H., Sauer, S., Bödcher, A.: Proceedings
of Model Driven Development of Advanced User Interfaces 2006. CEUR Workshop
Proceedings (to appear), http://ceur-ws.org/

www.manaraa.com

A Model-Driven Approach to the Engineering of
Multiple User Interfaces

Goetz Botterweck

Institute for IS Research, University of Koblenz-Landau, Germany
botterweck@uni-koblenz.de

Abstract. In this paper, we describe MANTRA1, a model-driven ap-
proach to the development of multiple consistent user interfaces for one
application. The common essence of these user interfaces is captured
in an abstract UI model (AUI) which is annotated with constraints to
the dialogue flow. We consider in particular how the user interface can
be adapted on the AUI level by deriving and tailoring dialogue struc-
tures which take into account constraints imposed by front-end platforms
or inexperienced users. With this input we use model transformations
described in ATL (Atlas Transformation Language) to derive concrete,
platform-specific UI models (CUI). These can be used to generate im-
plementation code for several UI platforms including GUI applications,
dynamic web sites and mobile applications. The generated user interfaces
are integrated with a multi tier application by referencing WSDL-based
interface descriptions and communicating with the application core over
web service protocols.

Keywords: Model-driven, multiple user interfaces, multiple front-ends,
user interface engineering, user interface modelling, model transforma-
tion, ATL, Atlas Transformation Language.

1 Introduction

An elementary problem in user interface engineering is the complexity imposed
by the diversity of platforms and devices which can be used as foundations.
The complications increase when we develop multiple user interfaces (based on
different platforms) which offer access to the same functionality. In that case we
have to find a way to resolve the inherent contradiction between redundancy (the
user interfaces of one application have something in common) and variance (each
user interface should be optimized for its platform and context of use). Model-
driven approaches appear to be a promising solution to this research problem,
since we can use models to capture the common features of all user interfaces and
model transformations to produce multiple variations from that. The resulting
implementations can be specialized (because we can embed platform-specific
implementation knowledge into the transformations) as well as consistent (as
they are all derived from the same common model and hence share the same
logical structure).
1 Model-based engineering of multiple interfaces with transformations.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 106–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

A Model-Driven Approach to the Engineering of Multiple User Interfaces 107

2 Related Work

The mapping problem [1], a fundamental challenge in model-based approaches,
can occur in various forms and can be dealt with by various types of ap-
proaches [2]. One instance of this is the question of how we can identify concrete
interaction elements that match a given abstract element and other constraints
[3]. A similar challenge is the derivation of structures in a new model based on
information given in another existing model. Many task-oriented approaches use
requirements given by the task model to determine UI structures; for example,
temporal constraints similar to the ones in our approach have been used to derive
the structure of an AUI [4] or dialogue model [5].

Florins et al. [6] take an interesting perspective on a similar problem by dis-
cussing rules for splitting existing presentations into smaller ones. That approach
combines information from the AUI and the underlying task model - similar to
our approach using an AUI annotated with temporal constraints which are also
derived from a task model.

Many model-driven approaches to UI engineering have proposed a hierar-
chical organization of interaction elements grouped together into logical units
[7]. A number of approaches to multiple user interfaces has been collected
in [8].

3 Abstract Description of User Interfaces

The MANTRA model flow (cf. Fig. 1) is structured vertically by abstraction
levels similar to the CAMELEON framework [9]. The goal of our process (in
Fig. 1 going from top to bottom) is to create several user interfaces (front-ends)
for the functionality provided by the core of that application.

Further steps are illustrated by a simple time table application. Fig. 2 shows
the corresponding AUI model. The user can search for train and bus connections
by specifying several search criteria like departure and destination locations,
time of travel or the preferred means of transportation (lower part of Fig. 2).
The matching connections are retrieved by a web service operation and displayed
as a list (upper right part of Fig. 2). At first, the AUI model only contains UI
elements () and UI composites () organized in a simple composition
hierarchy (indicated by relations) and the web service operation nec-
essary to retrieve the results. This model is the starting point of our approach
(cf. result of in Fig. 1) and captures the common essence of the multiple user
interfaces of the application in one abstract UI. This AUI contains platform-
independent interaction concepts like “Select one element from a list” or “Enter
a date”.

The AUI is then further annotated by dialogue flow constraints based on the
temporal relationships of the ConcurTaskTree approach [10]. For instance we can
describe that two interaction elements have to be processed sequentially ()
or can be processed in any order ().

www.manaraa.com

108 G. Botterweck

Fig. 1. Model flow in the MANTRA approach

4 Adapting on the AUI Level

As a next step (in Fig. 1) we augment the AUI by deriving dialogue and pre-
sentation structures. These structures are still platform-independent. However,
they can be adapted and tailored to take into account constraints imposed, for

www.manaraa.com

A Model-Driven Approach to the Engineering of Multiple User Interfaces 109

Fig. 2. AUI model of the sample application annotated with temporal constraints
(horizontal lines)

instance, by platforms with limited display size or by inexperienced users. The
result of this process step, the adapted AUI model, is shown in Fig. 3.

4.1 Clustering Interaction Elements to Generate Presentation
Units

To derive this adapted AUI model we cluster UI elements by identifying suitable
UI composites. The subtrees starting at these nodes will become presentations in
the user interface (). For instance we decided that “Time of Travel” and all
UI elements below it will be presented coherently. This first automatic clustering
is done by heuristics based on metrics like the number of UI elements in each
presentation or the nesting level of grouping elements. To further optimize the
results the clustering can be refined by the human designer.

4.2 Inserting Control-Oriented Interaction Elements

Secondly, we generate the navigation elements necessary to traverse between the
presentations identified in the preceding step. For this we create triggers ().
These are abstract interaction elements which can start an operation (Opera-
tionTrigger) or the transition to a different presentation (NavigationTrigger). In
graphical interfaces these can be represented as buttons, in other front-ends they
could also be implemented as speech commands.

www.manaraa.com

110 G. Botterweck

To generate NavigationTriggers in a presentation p we calculate dialogueSuc-
cessors(p) which is the set of all presentations which can “come next” if we
observe the temporal constraints. We can then create NavigationTriggers (and
related Transitions) so that the user can reach all presentations in dialogue-
Successors(p). In addition to this we have to generate OperationTriggers for all
presentations which will trigger a web service operation, e.g. “Search” to retrieve
matching train connections (lower right corner of Fig. 3).

These two adaptation steps (derivation of presentations, insertion of triggers)
are implemented as ATL model transformations. These transformations augment
the AUI with dialogue structures (e.g. presentations and transitions
between them) which determine the paths a user can take through our application.

It is important to note that the dialogue structures are not fully determined
by the AUI. Instead, we can adapt the AUI according to the requirements and
create different variants of it (cf. the two adapted AUI models resulting from step

in Fig. 1). For instance, we could create more (but smaller) presentations to
facilitate viewing on a mobile device – or we could decide to have large coherent
presentations, taking the risk that the user has to do lots of scrolling if restricted
to a small screen.

Fig. 3. Adopted AUI model with generated presentations and triggers

4.3 Selecting Content

As an additional adaptation step we can filter content retrieved from the web
service based on priorities. For instance, if a user has a choice, higher priority is
given to knowing when the train is leaving and where it is going before discov-
ering whether it has a restaurant. This optional information can be factored out
to separate “more details” presentations.

www.manaraa.com

A Model-Driven Approach to the Engineering of Multiple User Interfaces 111

A similar concept are substitution rules which provide alternative represen-
tations for reoccurring content. A train, for example, might be designated as
InterCityExpress, ICE, or by a graphical symbol based on the train category
(for instance, to indicate a luxury train) depending on how much display
space is available. These priorities and substitution rules are domain knowledge
which cannot be inferred from other models. The necessary information can
therefore be stored as annotations to the underlying data model.

5 Generating Concrete and Implemented User Interfaces

Subsequently we transform the adapted AUI models into several CUIs using a
specialized model transformation (in Fig. 1) for each target platform. These
transformations encapsulate the knowledge of how the abstract interaction ele-
ments are best transformed into platform-specific concepts. Hence, they can be
reused for other applications over and over again.

As a result we get platform-specific CUI models. These artefacts are still rep-
resented and handled as models, but use platform-specific concepts like “HTML-
Submit-Button” or “.NET GroupBox”. This makes it easier to use them as a basis
for the code generation (in Fig. 1) which produces the implementations of the
desired user interfaces in platform-typical programming or markup languages.

6 AUI Metamodel

6.1 User Interface Structure

The core structure of a user interface is given by the composition hierarchy of the
various user interface components. In the AUI metamodel this is modeled by a
“Composite” design pattern [11] consisting of the classes UIComponent, UIEle-
ment and UIComposite (cf. in the simplified excerpt from the AUI metamodel
in Fig. 4).

There are two types of UIComponents: The first subtype are UIElements (cf.
in the metamodel in Fig. 4) which cannot contain further UIComponents.

Hence, they become the “leaves” of the hierarchy tree (cf. the symbols in
the Timetable sample in Fig. 2). Subclasses of UIElement can be used to de-
scribe various abstract interaction tasks, such as the editing of a simple string
value (InputField) or the selection of one value from a list (SelectOne). A spe-
cial case of UIElements are Triggers which can start the transition to another
presentation (NavigationTrigger) or start a (potential data modifying) transac-
tion (TransactionTrigger). Please note that the AUI modelling language contains
many more UIElement subclasses, but they have been omitted here to simplify
the illustration.

The second subtype of UIComponents are UIComposites (cf. in Fig. 4).
UIComposites can contain other UIComponents via the association “uiCom-
ponents” and hence build up the “branches” of the hierarchy tree (cf. the
symbols in the Timetable sample in Fig. 2). A UIComposite can be connected to

www.manaraa.com

112 G. Botterweck

Fig. 4. Simplified excerpt from the AUI metamodel and the related notation symbols

its left and right sibling by temporal relations (cf. the horizontal lines
in Fig. 2). In the metamodel this is described by an instance of the associa-
tion class TemporalRelation which connects two UIComposites “leftSibling” and
“rightSibling”. There are several kinds of temporal operators, such as “enabling”,
“suspendResume” or “choice” (cf. the enumeration “TemporalOperator”).

There are two special cases of UIComposites: A UserInterface represents the
whole user interface and is therefore the root of the hierarchy. In the Timetable
sample this is the node “Timetable enquiry” (cf. Fig. 2).

Another special case of an UIComposite is a Presentation. A Presentation is
a hierarchy node that was selected during the adaptation process, because all
UIElements contained in the subtree below it should be presented coherently.
For instance see the node “Time of travel” in the Timetable sample (Fig. 3):
This node and the subtree below it are surrounded by a marked area to indi-
cate that all UIComponents within that area will be presented in one coherent
Presentation. Hence, this UIComposite will be converted into a Presentation in
further transformation steps.

6.2 Dialogue Model

The dialogue model of an abstract user interface is described by a StateMachine
(cf. in Fig. 4) which is based on UML Statecharts [12]. It consists of States,
which are linked to Presentations generated in the adaptation process. As long

www.manaraa.com

A Model-Driven Approach to the Engineering of Multiple User Interfaces 113

as the UserInterface is one particular state the related Presentation is displayed
(or presented in different ways on non-visual interfaces). When the UserInter-
face performs a Transition to a different State the next Presentation is displayed.
Transitions can be started by Events, for instance by a UIElementTriggeredE-
vent, which fires as soon as the related UIElement, such as a Trigger, is triggered.
There are many other event types, which have been omitted here to simplify the
metamodel illustration.

7 Applied Technologies

We described the metamodels used in MANTRA (including platform-specific
concepts) in UML and then converted these to Ecore, since we use the Eclipse
Modeling Framework (EMF) [13] to handle models and metamodels.

The various model transformations (e.g. for steps and in Fig. 1) are
described in ATL [14]. On the one hand, the integration of ATL with Eclipse
and EMF was helpful as it supported the development in an integrated environ-
ment which was well-known to us. On the other hand, the work with ATL model
transformations turned out to be time consuming; for instance, ATL was sensi-
tive even to small mistakes and then often did not provide helpful error messages.

We use a combination of Java Emitter Templates and XSLT to generate (
in Fig. 1) arbitrary text-oriented or XML-based implementation languages (e.g.
C-Sharp or XHTML with embedded PHP).

The coordination of several steps in the model flow is automated by mechanisms
providedby theEclipse IDEand related tools, e.g.we use the softwaremanagement
tool Apache Ant [15] (which is integrated in Eclipse) and custom-developed “Ant
Tasks” to manage the chain of transformations and code generation.

We use web services as an interface between the UIs and the application core.
Hence, the UI models reference a WSDL based description of operations in the
application core. The generated UIs then use web service operations, e.g. to
retrieve results for a query specified by the user.

8 Conclusion

We have shown how our MANTRA approach can be used to generate several
consistent user interfaces for a multi tier application (cf. Fig. 5).

At the moment, the automated model flow (cf. Fig. 1) starts at the AUI level.
But nothing prevents us from starting with a task model (e.g. in CTT) and then
either manually transferring the task structures into an AUI model, or extending
the automated model flow to support task models from which the annotated AUI
model can be derived.

We discussed how the user interface can be adapted on the AUI level by
tailoring dialogue and logical presentation structures which take into account
requirements imposed by front-end platforms or inexperienced users. For this
we used the hierarchical structure of interaction elements and constraints on the
dialogue flow which can be derived from a task model.

www.manaraa.com

114 G. Botterweck

Fig. 5. The generated front-ends (Web, GUI, mobile)

The approach generates fully working prototypes of user-interfaces on three
target platforms (GUI, dynamic website, mobile device) which can serve as front-
ends to arbitrary web services.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive and
valuable feedback.

References

1. Puerta, A.R., Eisenstein, J.: Interactively mapping task models to interfaces in
MOBI-D. In: DSV-IS 1998 (Design, Specication and Verication of Interactive Sys-
tems), June 3-5, Abingdon, UK (1998) 261–273

2. Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: cus-
tomizing dynamic models while preserving consistency. In: TAMODIA ’04 (Third
annual conference on Task models and diagrams), November 15-16, Prague, Czech
Republic, ACM Press (2004) 33–42

3. Vanderdonckt, J.: Advice-giving systems for selecting interaction objects. In:
UIDIS’99 (User Interfaces to Data Intensive Systems), September 5-6, Edinburgh,
Scotland (1999) 152–157

4. Paternò, F.: One model, many interfaces. In: CADUI’02 (Fourth International
Conference on Computer-Aided Design of User Interfaces), May 15-17, Valenci-
ennes, France (2002)

5. Forbrig, P., Dittmar, A., Reichart, D., Sinnig, D.: From models to interactive
systems – tool support and XIML. In: IUI/CADUI 2004 workshop ”Making model-
based user interface design practical: usable and open methods and tools”, Island
of Madeira, Portugal (2004)

6. Florins, M., Simarro, F.M., Vanderdonckt, J., Michotte, B.: Splitting rules for
graceful degradation of user interfaces. In: IUI’06 (Intelligent User Interfaces 2006),
January 29 - February 1, Sydney, Australia (2006) 264–266

www.manaraa.com

A Model-Driven Approach to the Engineering of Multiple User Interfaces 115

7. Eisenstein, J., Vanderdonckt, J., Puerta, A.R.: Applying model-based techniques
to the development of UIs for mobile computers. In: IUI ’01 (6th international
conference on Intelligent user interfaces), January 14-17, Santa Fe, NM, USA (2001)
69–76

8. Seffah, A., Javahery, H.: Multiple user interfaces : cross-platform applications and
context-aware interfaces. John Wiley & Sons, New York, NY, USA (2004)

9. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting
with Computers 15(3) (2003) 289–308

10. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation
for specifying task models. In Howard, S., Hammond, J., Lindgaard, G., eds.: In-
teract’97 (Sixth IFIP International Conference on Human-Computer Interaction),
July 14-16, Sydney, Australia, Chapman and Hall (1997) 362–369

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
reusable object-oriented software. Addison-Wesley, Reading, MA, USA (1995)

12. OMG: Uml 2.0 superstructure specification (formal/05-07-04). Object Manage-
ment Group (2005)

13. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse modeling
framework : a developer’s guide. The eclipse series. Addison-Wesley, Boston, MA,
USA (2003)

14. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Model Transformations
in Practice (Workshop at MoDELS 2005), October 3, Montego Bay, Jamaica (2005)

15. Holzner, S., Tilly, J.: Ant : the definitive guide. 2nd edn. O’Reilly, Sebastopol,
CA, USA (2005)

www.manaraa.com

Model-Driven Dynamic Generation of
Context-Adaptive Web User Interfaces

Steffen Lohmann, J. Wolfgang Kaltz, and Jürgen Ziegler

University of Duisburg-Essen,
Lotharstrasse 65, 47057 Duisburg, Germany

{lohmann, kaltz, ziegler}@interactivesystems.info

Abstract. The systematic development of user interfaces that enhance
interaction quality by adapting to the context of use is a desirable, but
also highly challenging task. This paper examines to which extent contex-
tual knowledge can be systematically incorporated in the model-driven
dynamic generation of Web user interfaces that provide interaction for
operational features. Three parts of the generation process are distin-
guished: selection, parameterization, and presentation. A semantically
enriched service-oriented approach is presented that is based on the Cat-

walk framework for model interpretation and generation of adaptive,
context-aware Web applications. Automation possibilities are addressed
and an exemplary case study is presented.

Keywords:Context-aware WebUser Interfaces, WebService Integration,
Ontology-based Modeling, Model Interpretation, Model-Driven User In-
terface Generation, Parameterization, Semantically Enriched SOA.

1 Introduction

The systematic development of complex applications requires a significant effort
in modeling throughout the whole life cycle. A promising approach is to use these
models not only as design basis for subsequent manual implementation or for
semiautomatic generation of application code, but rather consider these models
as an inherent part of the system. Changes in the models are then directly visible
in the application (or in a prototype used for testing). We developed Catwalk,
a Web application framework that follows this design paradigm by interpreting
ontology-based models at run-time for dynamic generation of adaptive, context-
aware Web applications (cp. [6]).

Building upon this framework, we investigate in this paper how Web user
interfaces for operational features can be dynamically selected, generated, and
adapted according to the context of use with the motivation to enhance user
interaction and reach better usability. By operational features, we mean inter-
active application functionality that goes beyond hypertext navigation (cp. [1]).
By context, we understand the generic meaning of the term, including various
aspects such as the user’s profile, current task and goal, the location, time, and
device used. In [7], we give a formal definition of context for Web scenarios.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 116–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces 117

First, we provide some background information by discussing work related
to the modeling and generation of adaptive Web applications and by giving
an overview of the Catwalk architecture and the underlying ontology-based
modeling method.

2 Related Work

Several existing approaches that address the systematic development of Web ap-
plications (Web Engineering) use conceptual models to describe the application’s
domain. Further aspects such as the application’s navigational structure or pre-
sentation issues are defined on the basis of these conceptual models. Additional
modeling is required for the definition of adaptive system behavior.

The UML-based Web Engineering (UWE) approach [9] explicitly addresses
adaptivity issues in Web Engineering by providing extra user and adaptation
models. UML is used for modeling; the models are stored in XMI. The develop-
ment framework Apache Cocoon has been extended for the generation of appli-
cation code from the UWE models [10]. However, user and adaptation models
are not considered thus far by the code generation framework and the generated
Java classes and XSLT stylesheets cannot be executed directly, but need to be
manually completed first. Furthermore, UWE addresses primarily the modeling
and adaptation of content, navigation and presentation; the integration of op-
erational features and the generation of corresponding user interfaces are not
covered by UWE.

The XML-based Web Modeling Language (WebML) [4] supports the integra-
tion of operational features via Web Services in modeling and application gener-
ation [11], but it is not discussed in detail how user interfaces for these features
are generated. Further, possibilities for the consideration of context in WebML
have been proposed [3], but not in conjunction with the modeling and generation
of user interfaces for operational features.

The model-driven generation of user interfaces is also a major research topic
in the Human-Computer Interaction (HCI) community. The development of so-
called Multiple or Plastic User Interfaces gains growing interest in the last couple
of years (for an overview see e.g. [13]). The focus is on the transformation from
abstract platform independent descriptions to concrete user interfaces for various
platforms. However, further contextual influences on the different levels of the
generation process are rarely addressed in these approaches.

Generally speaking, existing user interface engineering approaches do not con-
sider contextual influences in their modeling and application generation processes
to a full degree. They typically consider either information about user preferences
or about the location (see [8] for a survey) or address the model-driven generation
of multiple-platform user interfaces. Web Engineering approaches that address
adaptivity are primarily concerned with issues of how the application’s naviga-
tion or contents can be adapted. The generation of adaptive, context-aware Web
user interfaces for the interaction with operational features is not covered by
existing approaches.

www.manaraa.com

118 S. Lohmann, J.W. Kaltz, and J. Ziegler

3 Ontology-Based Web Application and Context
Modeling

Our approach is rooted within the WISE research project [14], where ontologies
are used for conceptual Web application modeling. Ontology-based software en-
gineering allows for advanced semantic expressive power in modeling and model
exchange compared to other modeling techniques (cp. [5]). Especially for the
interoperable integration of contextual knowledge, ontology-based modeling ap-
pears promising. The model base of our approach is a repository consisting of
the following models (see also Figure 1):

– A domain ontology, defining concepts, instances, and relations of the appli-
cation’s domain as well as referencing resources used by the application.

– Several context ontologies, defining concepts, instances, and relations of the
context of use which are relevant for adaptive system behavior.

– A context relations model, defining contextual influences, e.g. by means of
weighted relations between entries of the domain ontology and entries of the
context ontologies.

– A navigation, a view, and a presentation model, each containing adaptation
specifications that define rules for adaptive system behavior based on the
ontology entries and the defined context relations.

Fig. 1. Application and context modeling in the WISE methodology

4 The CATWALK Framework

Catwalk [6] is a component-oriented framework that interprets the models at
run-time to generate an adaptive, context-aware Web application. It is based
on Apache Cocoon; Figure 2 gives an architectural overview. The components
of Catwalk can be assigned to one of two categories. The first category con-
sists of components that provide core functionality for context-awareness and
reasoning. The second category consists of components that are responsible for
adaptive Web application generation. White arrows indicate the process flow:
each client request is matched in the Cocoon pipeline and processed through a

www.manaraa.com

Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces 119

series of components responsible for application generation, ultimately resulting
in a response to the client (e.g. a Web page). Arrows with dotted lines indicate
calls between components. Each component implements a specific concern, in the
sense of the separation of concerns architectural design principle. A component is
implemented by one or more Java classes and may use additional artefacts (such
as XSLT stylesheets for XML transformation). The model repository is accessed
via a Cocoon pseudo-protocol in each generation step and the corresponding
model parts are interpreted at run-time. A central component (the Adaptation
Engine) coordinates adaptive system behavior by interpreting context relations
and adaptation specifications and considering the respective contextual state
(provided by the Context Manager component).

Fig. 2. Component architecture of the Catwalk framework

5 Generation of Adaptive, Context-Aware User
Interfaces

Contextual knowledge affects different levels of the user interface generation
process. The following questions can be addressed: In what situations should a
user interface (or a part of it) be generated (selection)? Which values can be
preselected (parameterization)? What should the user interface look like (pre-
sentation)?

With these questions in mind, we now take a closer look at our approach
to incorporate contextual knowledge in the different steps of the user interface
generation process. This is accompanied by an example scenario for better illus-
tration: a Web portal for automobile services that provides a car rental function-
ality. Beforehand, we shortly address the representation of operational features
in our approach.

www.manaraa.com

120 S. Lohmann, J.W. Kaltz, and J. Ziegler

5.1 Representation

Catwalk follows a service-oriented approach – operational features that are
offered by the Web application are encapsulated in Web Services. Represent-
ing operational features is therefore primarily a Web Service composition and
coordination problem. Two dimensions can be distinguished: one, defining how
to combine discrete Web Services to more complex functionalities, and another,
defining the order in which Web Services are executed. The main challenge is the
definition of mappings and transformations between the different Web Services’
input and output values and the consideration of preconditions and effects. The
required modeling effort depends on the degree of semantic description that is
provided by the Web Services’ interfaces. The aim of the Semantic Web Services
approach is to provide best possible semantic descriptions of Web Services to
support the (partial) automation of Web Service discovery, composition, execu-
tion, and interoperation (see e.g. OWL-S [12]). If solely syntactic descriptions
of Web Services are given (such as is the case for WSDL), knowledge about the
capabilities of the involved Web Services must be part of the application models.

Context-aware Web Service composition and coordination models are not in
the focus of this paper and shall not be further discussed here (for details, see
e.g. [2]). For the remainder of this paper, we make the following generalized
assumption: Each operational feature is implemented by n Web Services (n = 1
is possible). These Web Services are referenced in the domain ontology together
with necessary information about their structure and interrelations.

Consider for example a car rental feature consisting of four parts, which are
realized by three Web Services – the first implements the selection of the desired
vehicle type(1) and the car model and equipment details(2), the second the
booking(3) and the third the payment(4). An ontology entry is created for each
part of the operational feature referencing the corresponding WSDL description.
The user shall interact with these Web Services in sequence – the ontology entries
are interconnected by appropriate relations and assigned to a master concept
that represents the whole feature. Additionally, parameters of the Web Services
are mapped (see section 5.3).

Alternatively, to briefly mention automation and extension possibilities for
Semantic Web Service scenarios, solely a formal semantic description of the de-
sired operational feature would be defined instead of explicit references to Web
Services. Then, the challenge is the automated discovery and composition of
Web Services that realize the desired operational feature.

5.2 Selection

The first step in the user interface generation process consists in the dynamic se-
lection of those operational features for which user interfaces should be presented
in the current Web page.

The navigation model defines the navigational structure of the Web appli-
cation by means of relations between entries of the domain ontology. The nav-
igational structure is mapped onto the user’s current navigational position to

www.manaraa.com

Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces 121

identify application items, including operational features, that should poten-
tially be offered in the current Web page. Furthermore, context relations between
operational features and concepts of the context ontologies are defined. Adap-
tation specifications in the navigation model determine the current relevance of
operational features in dependence of the context relations and the degree of ac-
tivation of context concepts (cp. [6]). According to these specifications and the
relations defined in the context relations model, none, one or several appropriate
operational features are selected for which user interfaces have to be presented
in the current Web page. This selection mechanism is independent of the exact
representation of the operational features in the domain ontology. It is merely
concerned with the selection of operational features that fit into the contextual
situation and the user’s navigational position.

Let us consider the car rental example scenario and suppose that the user
has accessed the homepage of the Web portal for automobile services. A relation
between the ontology entry of the homepage and the ontology entry of the reser-
vation feature has been defined in the navigation model. Furthermore, a context
relation has been modeled between the reservation feature and the ’owns car’
concept of the user context ontology; this concept is activated if the user owns
a car. At last, an adaptation specification has been defined, stating that a user
interface for the reservation feature should be presented if the related context
concept (’owns car’) is deactivated. As a result of this modeling, the reservation
feature will be presented directly on the homepage to users who do not own a car
whereas car owners reach it only via navigation. The context-dependent selection
of user interfaces should be considered as supporting rather than withholding.
Clearly, all essential functionality should always be alternatively accessible by
the user (e.g. via navigation).

5.3 Parameterization

In the next step, the user interface is pre-parameterized according to the con-
textual situation to provide initial support for user interaction. To achieve this,
context relations are defined between parameter entries of the operational fea-
tures and concepts of the context ontologies. The arrows linking the two windows
in Figure 3 illustrate these relations. The activated concepts of the context on-
tologies (window on the right hand side) determine the parameter value selection
in the Web page (window on the left hand side). In the example given, the pa-
rameter ’Model’ is mapped with the user’s favorite car model. Likewise, the
parameter ’Color’ with the user’s favorite car color. The parameter ’Convert-
ible’ is mapped with the season and the ’Pick-up’ point with the user’s current
location. If a mapped context concept is activated, the corresponding value is
handled as the default value and is preselected in the user interface. The way
a value is preselected depends on the type of user interface element, which is
determined in the subsequent generation step in accordance to the contextual
conditions.

Again, automation possibilities depend on the degree of semantic description
and shared understanding of the concepts. The automatic retrieval of context

www.manaraa.com

122 S. Lohmann, J.W. Kaltz, and J. Ziegler

concepts that match the required parameter values (e.g. the favorite car model)
is conceivable in a semantically rich scenario. Ultimately, if for every parameter
value a matching context concept is found or modeled, no user interaction at
all is required. However, user interaction (and control) might be necessary and
useful in many cases.

Generally, the danger of erroneous mapping or incorrectly retrieved context
exists that confuses instead of support the user. Suppose another city than Duis-
burg would be preselected as pick-up location in the example scenario that is
further away from the user’s current location. Then, the user would possibly
assume that there exists no pick-up location in Duisburg and would accept the
preselection without verifying his (false) assumption.

Fig. 3. Contextually adapted user interface of a car rental feature

5.4 Presentation

In the last step, the user interface elements’ look and feel is built. Alternative
presentation forms come into question, depending on the situational relevance
of an operational feature and the contextual conditions. Catwalk is designed
to support the definition of various UI patterns for this purpose. Each pattern
consists of an XSLT-template (and optionally an additional CSS-stylesheet) and
is referenced in the domain ontology. Similar to the modeling of the naviga-
tional structure, relations between pattern entries and entries of operational
features are defined – this time in the presentation model. These relations de-
termine for each operational feature or a set of features which patterns are suit-
able. Furthermore, relations between pattern entries and concepts of the context

www.manaraa.com

Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces 123

ontologies are modeled in the context relations model. Adaptation specifications
define which pattern should be selected for an operational feature in accordance
to the context relations and activated concepts.

The left window in Figure 3 shows a possible implementation of a user inter-
face for a part of the car rental example scenario. Suppose the user chose the
vehicle type in the first step and now has to select the desired car model, some
equipment details, as well as dates, times, pick-up, and return locations. The
user accesses the Web portal via a desktop PC in the example scenario – the
corresponding concept of the device context ontology is activated. Due to the
modeled context relations and the adaptation specifications of the presentation
model, a pattern is selected that is suitable for desktop PCs. Alternative patterns
and respective context relations and adaptation specifications can be defined for
other client devices such as PDAs or cellular phones. Varying patterns can also
be used in dependence of a feature’s relevance or for different user types (e.g.
for visually handicapped people, a CSS-stylesheet defining larger GUI-elements
might be selected).

Information required for the generation of suitable user interface elements
is either stored in the domain ontology or have to be retrieved from the Web
Service. Two ways of retrieval have to be distinguished: using the Web Service’s
WSDL description, in particular the XML Schema definitions, or using Web Ser-
vice calls. The first allows the creation of a suitable (X)HTML form element for
every XML Schema element by the pattern’s XSLT-stylesheet, depending on the
type of Schema element and (possibly) the number of provided value options. In
the example scenario, the Web Service’s WSDL description defines the complex
type ’Model’ that includes a list of car models that are all permitted parame-
ter values. The XSLT-stylesheet transforms these values in an HTML dropdown
listbox. Likewise, it transforms the complex type ’Color’ that defines a list of car
colors. The Boolean type ’Convertible’ is transformed in an HTML checkbox.
Corresponding data types are assigned to the parameters ’Date’ and ’Time’ in
the WSDL description - common date and time picker elements are created.
Again, semantically richer Web Service descriptions and a shared understanding
of interface parameters would help to enhance the transformation of interface
parameters to HTML form elements.

In the simplest way, the Web Service is invoked after submission of the whole
HTML-form for the first time. Then, the selected values and their interdepen-
dencies are validated by the Web Service and possibly a message informing
about conflicting values is send back. In such a case, the user might have to
select different parameter values again and again until all value conflicts are re-
solved (e.g., the desired car might not be available for a specific location, date,
and time). A more comfortable way is to trigger Web Service calls after certain
user interactions to update the list of parameter values that can be selected by
the user taking interdependencies into account. Ajax-based techniques are ap-
propriate for such an implementation. Ultimately, the Web Services determine
how sophisticated the user interface can be by providing or not providing such

www.manaraa.com

124 S. Lohmann, J.W. Kaltz, and J. Ziegler

functionality. In the simplest case, the XML Schema element name is used for
caption and text boxes are created allowing the input of parameter values (with
preselected recommendations, see section 5.3).

6 Conclusion and Future Work

The homogenous integration of user interfaces for interaction with operational
features is an emerging issue in the course of the evolution of Web applications
from simple information systems to complex interactive applications. In the pre-
sented service-oriented approach, contextual influences have been considered in
the modeling process right from the start for different parts of the generation pro-
cess: selection, parameterization, and presentation. The approach builds upon
an ontology-based modeling method and upon the Catwalk framework that
provides run-time generation of adaptive, context-aware Web applications from
these models.

We have shown how the incorporation of contextual knowledge can support
user interaction and may lead to better usability that could make the additional
modeling effort worthwhile in certain cases. We have also discussed some au-
tomation possibilities, especially in conjunction with Semantic Web Services.
Likewise, it has become apparent that incorrect adaptation can confuse the user
and reduce interaction quality. Thus, automation possibilities are restricted to
some degree and careful modeling is demanded. The empirical investigation of
adaptation effects is a difficult task; however, heuristic methods should provide
a good basis for design decisions in many cases.

The presented approach is independent of specific context sensing mecha-
nisms. However, possibilities for the exchange and the evaluation of externally
sensed context information would be useful extensions. Other topics for future
work include the definition of various context-specific UI patterns as well as a
better support for the modeling of interaction processes. The empirical investi-
gation of different adaptation strategies and their effects on usability issues are
further topics of interest.

Acknowledgements

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) under grant no. 01ISC30F.

References

1. Baresi, L., Garzotto, L., Paolini, P.: From Web Sites to Web Applications: New Is-
sues for Conceptual Modeling. In Proceedings of the Workshops on Conceptual
Modeling Approaches for E-Business and The World Wide Web and Concep-
tual Modeling: Conceptual Modeling for E-Business and the Web, London, UK.
Springer LNCS 1921 (2000) 89–100

www.manaraa.com

Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces 125

2. Ben Mokhtar, S., Fournier, D., Georgantas, N., Issarny, V.: Context-aware Service
Composition in Pervasive Computing Environments. In Proceedings of the 2nd
International Workshop on Rapid Integration of Software Engineering techniques
(RISE’05), Heraklion Crete, Greece. Springer LNCS 3943 (2006) 129–144

3. Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven Development of Context-
Aware Web Applications. ACM Trans. Inter. Tech. (TOIT) 7(2) (2007), to appear

4. Ceri, S. et al.: Designing Data-Intensive Web Applications. Morgan Kaufmann
(2002).

5. Hesse, W.: Ontologies in the Software Engineering Process. In Proceedings of the
2nd Workshop on Enterprise Application Integration (EAI’05), Marburg, Germany.
CEUR 141 (2005)

6. Kaltz, J.W.: An Engineering Method for Adaptive, Context-aware Web Applica-
tions. PhD thesis, University of Duisburg-Essen. Utz (2006). Also published online
at http://purl.oclc.org/NET/duett-07202006-093134

7. Kaltz, J.W., Ziegler, J., and Lohmann, S.: Context-Aware Web Engineering: Mod-
eling and Applications. RIA - Revue d’Intelligence Artificielle, Special Issue on
Applying Context Management 19(3) (2005) 439–458

8. Kappel, G., Pröll, B., Retschitzegger, W., and Schwinger, W.: Customisation for
Ubiquitous Web Applications - A Comparison of Approaches. Int. J. Web Eng.
and Technol. (IJWET) 1(1) (2003) 79–111

9. Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-
Maximilians-University Munich (2001)

10. Kraus, A., Koch, N.: Generation of Web Applications from UML Models using
an XML Publishing Framework. In Proceedings of the 6th World Conference on
Integrated Design and Process Technology (IDPT’02), Pasadena, USA (2002)

11. Manolescu, I. et al.: Model-Driven Design and Deployment of Service-Enabled Web
Applications. ACM Trans. Inter. Tech. 5(3) (2005) 439–479.

12. Martin, D. et al.: Bringing Semantics to Web Services: The OWL-S Approach.
In Proceedings of the 1st International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC’04), San Diego, USA. Springer LNCS 3387
(2003) 26–42.

13. Seffah, A., Javahery, H.: Multiple User Interfaces: Crossplatform Applications and
Context-Aware Interfaces. J.Wiley (2003)

14. WISE - Web Information and Service Engineering http://www.wise-projekt.de
(2006/Oct/28)

http://purl.oclc.org/NET/duett-07202006-093134
http://www.wise-projekt.de
http://www.wise-projekt.de

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 126 – 130, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modelling and Analysis of Real Time and Embedded
Systems – Using UML

Susanne Graf 1, Sébastien Gérard2, Øystein Haugen3, Iulian Ober4, and Bran Selic5

1 VERIMAG, Grenoble, France
Susanne.Graf@imag.fr

2 CEA-List, Sacley, France
Sebastien.Gerard@cea.fr

3 University of Oslo, Norway
Oystein.Haugen@ifi.uio.no

4 IRIT, Toulouse, France
ober@iut-blagnac.fr

5 IBM, Canada
bselic@ca.ibm.com

Abstract. This paper presents an overview on the outcomes of the workshop
MARTES on Modelling and Analysis of Real Time and Embedded Systems
that has taken place for the second time in association with the MoDELS/UML
2006 conference. Important themes discussed at this workshop concerned (1)
tools for analysis and model transformation and (2) concepts for modelling
quantitative aspects with the perspective of analysis.

Keywords: Modelling, Analysis, Real Time, Embedded Systems.

1 Introduction

The motivation for holding this workshop is rooted in the increasing request to use
UML and related modelling formalisms also for the development of real-time and
embedded systems and by their particular needs with respect to modelling concepts
and analysis.

Even more than in other domains, in the context of real-time and embedded
systems, the idea of model-based development, where models representing
specifications of software and system level aspects are compiled into code for
particular platforms, is highly attractive. In such systems, the inherent complexity due
to the presence of concurrency makes a posteriori analysis difficult. Moreover, for
safety critical systems the need for certification requires a rigorous design process.
Replacing – at least partly – code-based analysis by model-based analysis and coding
by an a priori valid code generation method, is extremely attractive then: it allows
both to achieve higher quality and speed up the development process.

In particular application domains, tools supporting such an approach have been
developed already in the past. Good examples are the Esterel and the SCADE tools
[Est] for the development of real-time controllers with guaranteed properties for
specific, and relatively simple platforms. These tools come with a set of theories

www.manaraa.com

 Modelling and Analysis of Real Time and Embedded Systems – Using UML 127

which allow establishing the correctness of the implemented methodology and code
generation technique as well as with a set of analysis and verification tools supporting
the methodology.

In order make this attractive approach available for a wider range of applications
and for a less restricted set of modelling paradigms and platforms, the above
mentioned modelling languages need to be enriched – in particular for distributed and
performance oriented systems, as well as for modelling relevant aspects of the target
platform architecture. Tool support needs to be provided for such richer frameworks.
The targeted systems are intrinsically more difficult to analyse, and finding new
compromises between flexibility, performance and analysability remains a great
challenge. UML provide a rich syntactic framework that can be used for this purpose,
but tool supported frameworks have still to be defined.

The main topics of the MARTES workshop were:

1. UML profiles or other modelling languages which both attack this challenge
and come with a semantic underpinning.

2. Analysis methods and tools that are useful for such modelling languages and are
or could be integrated in the development process. Tool support concerns model-
based analysis and validation, compilation and model-transformation, as well as
analysis of such transformation methods.

3. Finally, demonstrating the practical applicability of such modelling languages
and tools for real time and embedded applications on hand of case studies.

An additional goal was to bring together researchers from academia and industry to
discuss and progress on these issues, as well as other issues in the context of time,
scheduling and architecture in UML and UML-related notations..

2 The Issues Discussed at the Workshop

Nine quality contributions were presented at the workshop, backed by a full paper or
by a shorter position paper. All the papers together are available on the workshop
webpage1. 50 participants from academia and from industry underline the importance
of the topics discussed.

We give an overview on the topics addressed by the different papers and discuss
how they are related. All main topics were addressed and approached even from quite
different angles. We note some general tendency to work on modelling concepts and
methodologies by relegating the issues related to analysis to a later point of time. We
believe that it is of uttermost importance to conceive the concepts jointly with
appropriate methods supporting analysis and code derivation. From the discussion at
the workshop, it becomes quite obvious that no modelling language or UML profile
will suffice in a development process if there is no appropriate tool support, going
well beyond graphical editing tools.

Two papers appear in these proceedings; they have been selected by considering
their intrinsic quality but also the particular interest with respect to the aims of this
workshop.

1 See http://www.martes.org/ provides access also to the proceedings [GGH*06].

www.manaraa.com

128 S. Graf et al.

2.1 Profiles and Modelling Languages

A first step to the inclusion of extra-functional characteristics into the modelling
framework has been achieved by the “UML profile for Schedulability, Performance
and Time” [OMG03]. More recently, several efforts have been and are being
undertaken to improve this initial proposal in several aspects, e.g. to integrate the
profile with UML 2.0 rather than UML 1.4.

• A “UML Profile for Modelling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QoS)” [OMG04].

• The IST project Omega aimed also at the definition of a UML profile for real-
time and embedded systems with a semantic foundation [GOO05] and with
tool support for validation [OGO05]. The resulting profile defines a set of
modelling elements, expressive enough to define a precise semantics for all the
time constraints introduced in SPT as tag values or stereotypes by means of
constraints between well defined occurrences of events.

• The MARTE profile has a larger scope. It addresses all concepts important for
real time embedded systems.

In last year’s workshop [GGH+05], some aspects of it have been discussed, in
particular the domain model for analysis relevant quantitative annotations [EGP+05].
This year an almost achieved version of this aspect of the MARTE profile has been
presented in [EMD+06].

[ACS+06] refers also to MARTE. It introduces “logical clocks” as a means for
characterizing semantically all the time constraints expressed by the above mentioned
annotations in terms of constraints on clocks, where clocks correspond to events of the
Omega profile [GOO05], but the way of expressing constraints is different, and in fact
not fully defined yet for [ACS+06].

[HKH06] introduces extensions to UML2 sequence diagrams which offer support
for more complete and precise behaviour specifications. The mechanism of exceptions
proposed in [HKH06] is very expressive for capturing behaviours triggered by
violated constraints, and shows good qualities concerning refining and composability.
The immediate applicability and the level of user interest in these results explains why
the paper is included in these proceedings.

2.2 Techniques and Tools

Several contributions presented tools that performed some analysis based on
descriptions in their targeted profile of UML. They represent some step towards
frameworks for tool supported UML-based development, but much more is still
needed.

[NWW+06] was chosen to appear in this volume since it presents promising new
ideas to cope with growing complexity of embedded systems. Backed by an
impressive prototype tool they showed how traditional graphical modelling can be
supplemented by rule-based specification in a domain specific language. The rules for
model configuration are then fed to a constraint solver that may also guide the
developer through the configuration.

www.manaraa.com

 Modelling and Analysis of Real Time and Embedded Systems – Using UML 129

[SG06] gives a way to describe performance characteristics of a product line in a
UML profile and how to analyze performance systematically from such descriptions.

Similarly, [RGD+06] presents an improved profile targeting software radio and a
corresponding tool for rapid prototyping and investigating performance of such
systems. Finally, [GHH06] applies the author’s previously presented approach,
Mechatronic UML, to hard real-time modelling problems such as issues of
individually drifting clocks.

2.3 Applications

On the side of applications, this year we focussed on system-oriented specifications
including real-time and safety critical requirements. The [CBL+06] contribution
discussed the modelling in SysML of a known benchmark system specification, and
provided insight on the application of this emerging standard as well as comparisons
to a general language like UML 2.

2.4 Discussion and Conclusions

The outcome of the discussions and requests from the audience -- in particular those
responsible for designing and developing software for real-time and embedded
systems – underlines the importance of tool support for the entire development
process, from high level models to running code. This tool support must also include
those new concepts and paradigms that appeared more recently in the context of real-
time and embedded systems in order to cope with always more complex systems in
which concurrent and distributed software, including local and wide area distribution,
are of steadily increasing importance.

References

[ACS+06] Ch. André, A. Cuccuru, R. de Simone, Th. Gautier, F. Mallet, and JP. Talpin
“Modelling with logical time in UML for real-time embedded system design” in
[GGH+06]

[CBL+06] Pietro Colombo, Vieri Del Bianco, Luigi Lavazza, Alberto Coen-Porisini “An
Experience in modelling real-time systems with SysML” in [GGH+06].

[EGP+05] Huáscar Espinoza, Hubert Dubois, Sébastien Gérard, Julio Medina, Dorina C.
Petriu, Murray Woodside. Annotating UML Models with Non-Functional
Properties for Quantitative Analysis. In [GGH+05].

[EMD+06] H. Espinoza, J. Medina, H. Dubois, S. Gerard, F. Terrier, “Towards a UML-
based Modelling Standard for Schedulability Analysis of Real-time systems” in
[GGH+06].

[Est] Esterel Technologies “The Scade and Esterel development environments”, see
also http://www.esterel-technologies.com/.

[GGH+05] S. Gérard, S. Graf, O. Haugen, I. Ober and B. Selic, editors. MARTES 2005,
Workshop on Modelling and Analysis of Real Time and Embedded Systems,
with MODELS 2005. LNCS.

www.manaraa.com

130 S. Graf et al.

[GGH+06] S. Gérard, S. Graf, O. Haugen, I. Ober and B. Selic, editors. MARTES 2006,
Workshop on Modelling and Analysis of Real Time and Embedded Systems.
Research Report 343, Univ. of Oslo, Department of Informatics,
ISBN 82–7368–299–4 October 2006.

[GHH06] Holger Giese, Stefan Henkler, and Martin Hirsch “Analysis and Modelling of
Real-Time Systems with Mechatronic UML taking Clock Drift into Account” in
[GGH+06].

[GOO05] S. Graf, I. Ober, and I. Ober. Timed annotations in UML. STTT, Int. Journal on
Software Tools for Technology Transfer, April 2006.

[HKH06] Oddleif Halvorsen, Ragnhild Kobro Runde, Øystein Haugen “Time Exceptions in
Sequence Diagrams” in this volume.

[NWW+06] Andrey Nechypurenko, Egon Wuchner, Jules White, Douglas C. Schmidt
“Applying Model Intelligence Frameworks for Deployment Problem in Real Time
and Embedded Systems” in this volume.

[OGO05] I. Ober, S. Graf, and I. Ober. Validating timed UML models by simulation and
verification. Int. Journal on Software Tools for Technology Transfer, April 2006.

[PSB+06] Steffen Prochnow, Gunnar Schäfer, Ken Bell, and Reinhard von Hanxleden
“Analyzing Robustness of UML State Machines” in [GGH+06].

[RGD+06] S. Rouxel, G. Gogniat, J-P. Diguet, J-L. Philippe, C. Moy “A3S method and tools
for analysis of real time embedded systems” in [GGH+06].

[SG06] Julie A. Street and Hassan Gomaa “An Approach to Performance Modelling
of Software Product Lines” in [GGH+06].

www.manaraa.com

Time Exceptions in Sequence Diagrams

Oddleif Halvorsen1, Ragnhild Kobro Runde2, and Øystein Haugen2

1 Software Innovation
2 Department of Informatics, University of Oslo
{oddleif|ragnhilk|oysteinh}@ifi.uio.no

Abstract. UML sequence diagrams partially describe a system. We
show how the description may be augmented with exceptions triggered by
the violation of timing constraints and compare our approach to those
of the UML 2.1 simple time model, the UML Testing Profile and the
UML profile for Schedulability, Performance and Time. We give a for-
mal definition of time exceptions in sequence diagrams and show that
the concepts are compositional. An ATM example is used to explain and
motivate the concepts.

Keywords: specification, time constraints, exception handling, formal
semantics, refinement.

1 Introduction

UML sequence diagrams [9] are a useful vehicle for specifying communication
between different parts of the system. A sequence diagram specifies a set of
positive traces and a set of negative traces. A trace is a sequence of events,
representing a system run. The positive traces represent legal behaviors that the
system may exhibit, while the negative traces represent illegal behaviors that
the system should not exhibit.

Timing information may be included in the diagram as constraints. These
constraints may refer to either absolute time points (e.g. the timing of single
events) or durations (e.g. the time between two events). The described behavior
is negative if one or more time constraints are violated.

In practice, it may often be impossible to ensure that a time constraint is
never violated, for instance when the constrained behavior involves communica-
tion with the environment. Usually, a sequence diagram does not describe what
should happen in these exceptional cases. In this paper we demonstrate how the
specification may be made more complete by augmenting the sequence diagram
with exceptions that handle the violation of time constraints. The ideas behind
our approach originate from [2], which treats exceptions triggered by wrong or
missing data values in the messages.

Modeling violation of time constraints as exceptions rather than using the
alt-operator for specifying alternative behaviors, has the advantage that

– specifying the exceptional behavior separately from ordinary/expected be-
havior makes the diagrams simpler and more readable,

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 131–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

132 O. Halvorsen, R.K. Runde, and Ø. Haugen

– exceptional behavior can easily be added to normal behavior in separate
exception diagrams.

A single event may violate a time constraint by occurring too early, too late
or never at all. All three situations will result in an exception, but the exact
exception handling to be performed will typically be very different depending on
the nature of the violation. Here we focus on the last case, where an event has
not occurred within the given time limit and we therefore assume that it will
not occur at all. If the event for some reason occurs at some later point it should
be treated as another exception.

2 Background

Both the UML 2.1 simple time model (Sect. 2.1) and the UML profile for
Schedulability, Performance and Time (Sect. 2.2) introduce concepts and no-
tations for defining time constraints, but do not consider what should happen in
case of violations. TimedSTAIRS (Sect. 2.3) distinguishes between the reception
and the consumption of a message, but being based on UML 2.1 simple time
model, TimedSTAIRS does not consider violations either. The default concept
of UML Testing Profile (Sect. 2.4) and our previous work on exception han-
dling (Sect. 2.5) consider violation of constraints, but mainly regarding wrong
or missing data values, and not time constraint violations.

2.1 The UML 2.1 Simple Time Model

UML 2.1 [9] includes a simple time model intended to define a number of concepts
relating to timing constraints. In general the semantics of the timing constraints
follow the general interpretation of constraints in UML: “A Constraint repre-
sents additional semantic information attached to the constrained elements. A
constraint is an assertion that indicates a restriction that must be satisfied by a
correct design of the system.” Furthermore the timing constraints always refer
to a range of values, an interval. “All traces where the constraints are violated
are negative traces (i.e., if they occur in practice the system has failed).” Some
notation is introduced to define such interval time constraints and we apply this
notation in this paper. UML 2.1 only states that when the constraints are vio-
lated the system is in error. Exceptions triggered by time constraint violations
are not considered.

2.2 UML Profile for Schedulability, Performance and Time

The UML profile for Schedulability, Performance and Time Specification [7] is a
profile based on UML 1.4 [6] describing in great detail concepts relating to timely
matters. The profile, hereafter referred to as SPT, will have to be updated to
UML 2.1. There is now ongoing work to upgrade the real time profile under the
name MARTE.

www.manaraa.com

Time Exceptions in Sequence Diagrams 133

SPT introduces a large number of concepts. They represent most often proper-
ties of behavioral units needed for their scheduling and for performance analysis.
Exceptions are not mentioned at all. By introducing concepts that allow to de-
fine “timing marks”, it is possible to describe constraints on these timing marks,
and in principle express time and duration constraints similar to what is the
case with UML 2.1 simple time model. SPT allows constraints to be expressed
on a large number of properties having been declared on behavioral units, but it
never considers what happens if the constraint is not met. Implicitly this means
that if the constraint is not met, the system is in complete failure.

2.3 TimedSTAIRS

TimedSTAIRS [4] is an approach to the compositional development of timed
sequence diagrams. With time constraints, we argue that it is important to know
whether a given constraint applies to the reception or the consumption of the
message. Hence, in [4] we introduce a three-event semantics for timed sequence
diagrams. In some cases, the time constraint should apply to the receiving of the
message, while it in other situations should apply to the consumption.

In order to make a graphical distinction between reception and consump-
tion, [4] uses a double arrow for reception and the standard single arrow for
consumption. We will follow this convention in our examples. If only the con-
sumption event is present in the diagram, the reception event is taken implicitly,
while if only the reception event is present, the implicit consumption event may
or may not take place.

In TimedSTAIRS, the semantics of a sequence diagram is a set of positive
(i.e. legal) behaviors and a set of negative (i.e. illegal) behaviors. All traces that
are not described in the diagram are said to be inconclusive. These may later
supplemented either the positive or the negative traces to refine the specification.
Please see Sect. 4 for a more precise semantics.

2.4 UML Testing Profile — Default Concept

The U2TP (UML Testing Profile) [8] introduces the notion of Defaults that
aims to define additional behavior when a constraint is broken. The notion of
Defaults come from TTCN (Testing and Test Control Notation) [1] where it is
used in a more imperative sense than sequence diagrams. In the UML Testing
Profile the semantics is given by an elaborate transformation algorithm that in
principle produces the traces of the main description combined with the Defaults
on several levels.

However, U2TP says little about the semantics of defaults triggered by the
violation of time constraints. The idea behind the defaults on different levels is
that even the notoriously partial interactions are made complete and actually
describing all behaviors. But the U2TP definition is not adequately precise in
this matter and there are no convincing examples given to explain what happens
when a time constraint is violated.

www.manaraa.com

134 O. Halvorsen, R.K. Runde, and Ø. Haugen

2.5 Proposed Notation for Exceptions in Sequence Diagrams

In [2] we introduce notation for exceptions in sequence diagrams. The constraints
that are violated are always on data values at the event associated with the
exception. Violation of time constraints is not considered. The semantics of the
behavior including the exceptions are given by a transformation procedure quite
similar to that of U2TP. The idea is that supplementing traces are defined in
the exception starting from the prefix of traces leading up to a triggering event.

The other novelty of our approach in [2] is that it suggests a scheme of dynamic
gate matching that makes it possible to define exceptions independently. That
idea is orthogonal to what we try to convey in this paper.

3 Time Exceptions in the ATM Example

An example with an Automatic Teller Machine (ATM) shows how time excep-
tions supplement the description and make the specification more complete and
comprehensive without losing sight of the normal scenarios. The ATM example
is based on the case from [2].

3.1 The Normal Flow

The normal flow refers to a happy day scenario when everything goes right. We
show the use of an ATM to withdraw money. The user communicates with an
ATM, which in turn communicates with the Bank.

Withdrawal in Fig. 1 specifies that the user is expected to insert a card and
enter a four digit pin, whereas the ATM is to send the pin to the bank for
validation. While the bank is validating the pin, the ATM asks the user for the
amount to withdraw. If a valid pin is given, the bank will return OK. Then the

:Bank:User :ATM

Code(cid, pin)

ref EnterPin

Cardid(cid)

msg(”Select amount”)

Withdraw(amount)

Card

Money(amount)

Amount(amount)

sd Withdrawal sd EnterPin

:User :ATM

msg(”Enter pin”)

Digit
loop(4) {0..5}

OK(maxAmount)

Fig. 1. Specification of withdrawal and entering a pin

www.manaraa.com

Time Exceptions in Sequence Diagrams 135

ATM orders the Bank to withdraw the money from the account and gives the
cash and the card to the user.

EnterPin in Fig. 1 specifies how the user gives the ATM the four digit pin. The
loop(n) construct may be viewed as a syntactical shorthand for duplicating the
contents of the loop n times. An interaction use (here: referring EnterPin) means
the same as an inclusion of a fragment equal to the referred sequence diagram.

This specification is not very robust, and cannot serve as a sufficient speci-
fication for implementation. What if the user enters a wrong pin, the ATM is
out of money, the user’s account is empty or the ATM loses contact with the
bank? We argue for the need to handle exceptions, even though sequence dia-
grams will always be partial description that are not supposed to cover every
possible trace. Still, we aim at making the diagrams more complete, focusing
on the important functionality of the system. Another goal is to make a clearer
separation of normal and exceptional behavior and thus increase readability.

3.2 Applying Time Exceptions to the ATM

Sequence diagrams are often filled with various constraints, but they seldom say
much about what to do if a constraint breaks. Hence the system has completely
failed if a constraint is broken. This is less expressive than desired. In order to
make the specification more robust, we will add time exceptions to the ATM case.
A time exception may be that the user for some reason leaves before completing
the transaction, or that the bank spends too long time to validate the given pin.

As mentioned, time violations are of three kinds, either the event arrives too
early, too late or never. Here we assume that if an event has not occurred within
the specified constraint, it will never happen. If the event for some reason occurs
after the constraint was violated it should be treated as another exception.

The semantics of time constraints builds on timestamps. We assume that the
running system performs some kind of surveillance of the system, to evaluate the
constraints. Intuitively, this means that we consider time constraints conceptu-
ally to behave like alarm clocks. If the associated event is too late the alarm goes
off and the exception handler is triggered.

3.3 Time Exceptions in EnterPin

We present the notation by applying a time exception to the EnterPin diagram.
An exception occurs when the user enters less than four digits or that the digits
for some reason is not received by the ATM. If we do not handle this, the ATM
will not be ready when the next user arrives. We need a way to decide whether
the user has left, and then take the card from the card reader and store it some
place safe before canceling the user’s session.

In EnterPin in Fig. 2 we have added a time constraint stating that if the
ATM has not received all the digits within the specified time, the exception
UserLeftCard will fire. The time constraint itself is initialized on the send event
on msg, and attached to the bottom of the loop fragment. Attaching it to the
bottom of the loop fragment indicates that the time constraint must hold for
the last event, and hence all the preceding ones as well.

www.manaraa.com

136 O. Halvorsen, R.K. Runde, and Ø. Haugen

sd UserLeftCard

:User :ATM

msg(”Service canceled.”)

terminate

sd EnterPin

:User :ATM

msg(”Enter pin”)

Digit
loop(4) {0..5}

Exception
UserLeftCard

Fig. 2. EnterPin with time exception

UserLeftCard in Fig. 2 shows how the UserLeftCard exception is handled. In
the case that the user leaves the ATM before proper completion of the service,
the ATM sends a message stating that the service was canceled. By stating
terminate we mean that the service, withdrawal of money, is to terminate — not
the whole ATM. This will be explained in more detail below.

3.4 Time Exceptions in Withdrawal

In Fig. 3 we apply time exceptions to a more complex example to highlight some
challenging situations.

Notice that the ATMPinValidation exception uses three-event semantics as
described in TimedSTAIRS (see Sect. 2.3). This states that the message only
needs to be received in the message buffer within the specified time constraint

:Bank:User :ATM

Code(cid, pin)

Cardid(cid)

msg(”Select amount”)

Withdraw(amount)

{0..3}

Card

Money(amount)

OK(maxAmount)
Amount(amount)

sd Withdrawal catch

ref EnterPin

Exception
ATMPinValidationTimeout

Fig. 3. Withdrawal with time exception

www.manaraa.com

Time Exceptions in Sequence Diagrams 137

and not consumed. The reason for this time constraint is mainly to make sure
that we do not lose contact with the bank during the request.

Fig. 4 specifies how an ATMPinValidationTimeout exception is handled by
the ATM and the Bank. The exception is triggered if the ATM does not receive
the result of the pin validation within the specified time. Our first exceptional
reaction is to repeat the request to the Bank. If the response from the bank again
fails to appear within the given time, the ATMCancel exception is triggered.

sd ATMPinValidationTimeout

card

:ATM :Bank

Code(cid, pin)

{0..3}Exception
ATMCancel OK(maxAmount)

sd ATMCancel

:User :ATM

Msg(”Bank timeout”)

terminate

return

Fig. 4. Handling of pin validation timeout on the ATM

Fig. 4 illustrates that an exception may end with return or with terminate.
While return means a perfect recovery back to the original flow of events, termi-
nate means that the service should be terminated gracefully. Termination con-
cludes the closest invoker declaring catch as shown in Fig. 3. If neither return
nor terminate is given, return is assumed. If no catch is found, the system will
not continue.

The events of a sequence diagram may in relation to an exception trigger be
divided in three groups. First there are the events that have occurred before the
trigger. Second we have events that must occur after the exception, and third
the events enabled but not executed at the trigger. Such enabled events may
happen in parallel with the exception handling.

If we apply this to Withdrawal, Fig. 3, we notice that the ATM must at least
send a code for validation to the bank before the timeout event may occur.
Actually the exception may only occur more than three time units after the
sending of the validation request. That is, before the ATMPinValidationTimeout
may occur the user must have given a card, entered the pin, the ATM must
have sent the pin for validation and three time units must have elapsed. After a
possible recovery from the ATMPinValidationTimeout exception we can continue
with sending the withdrawal message and returning the card and money.

The challenging part is how to handle the selection of amount if an exception
occurs. Since these events are enabled they may happen in parallel with the
exception. That is because the user is outside the ATMs sphere of control. We
have three separate lifelines (User, ATM and Bank) that each communicates

www.manaraa.com

138 O. Halvorsen, R.K. Runde, and Ø. Haugen

with the others through messages. Each lifeline in this distributed environment
is considered autonomous meaning that they are independent processes. We may
therefore run the exception handling in parallel with other enabled events.

By enabled events we mean events that may happen regardless of whether
the exception occurs or not. In the ATM example, an enabled event is the con-
sumption of msg(“Select amount”), and events only depending on that (here:
user sending Amount). These events are outside the control of the exception
handling, and must be allowed to continue. An example of a non-enabled event
is the sending of Money from the ATM. This event can never be sent before the
OK message is received.

4 The Formal Semantic Domain of Sequence Diagrams

In this section we briefly recount the main parts of the semantics of timed se-
quence diagrams as defined in [4]. In Sect. 5 we give our proposal for how this
semantics may be extended to handle time exceptions.

Formally, we use denotational trace semantics in order to capture the meaning
of sequence diagrams. A trace is a sequence of events, representing one run of
the system. As explained in Sect. 2.3, we have three kinds of events: the sending,
reception and consumption of a message, denoted by !, ∼ and ?, respectively. A
message is a triple (s, tr, re) consisting of a signal s (the content of the message),
a transmitter tr and a receiver re. The transmitter and receiver are lifelines, or
possibly gates. (For a formal treatment of gates, see [5].)

Each event in the sequence diagram has a unique timestamp tag to which
real timestamps will be assigned. Time constraints are expressed as logical
formulas with these timestamp tags as free variables. Formally, an event is
a triple (k, m, t) of a kind k (sending, reception or consumption), a message
m and a timestamp tag t. As an example, EnterPin in Fig. 2 consists of six
events: (!, m, t1), (∼, m, t2), (?, m, t3), (!, d, t4), (∼, d, t5) and (?, d, t6) where
m = (msg(Enterpin), ATM, User) and d = (Digit, User, ATM). Notice that
in Fig 2 the reception events are implicit, meaning that they may happen at
any time between the corresponding send and receive events. The given time
constraint may be written as t6 ≤ t1 + 5.

H denotes the set of all well-formed traces. For a trace to be well-formed, it
is required that

– for each message, the send event occurs before the receive event if both events
are present in the trace.

– for each message, the receive event occurs before the consumption event if
both events are present in the trace.

– the events in the trace are ordered by time.

E denotes the set of all syntactic events, and [[E]] is the set of all corresponding
semantical events with real timestamps assigned to the tags:

[[E]] def= {(k, m, t �→ r) | (k, m, t) ∈ E ∧ r ∈ R} (1)

www.manaraa.com

Time Exceptions in Sequence Diagrams 139

Parallel composition s1 ‖ s2 of two trace-sets is the set of all traces such that
all events from one trace in s1 and one trace in s2 are included (and no other
events), and the ordering of events from each of the traces is preserved. Formally:

s1 ‖ s2
def= {h ∈ H | ∃p ∈ {1, 2}∞ : (2)

π2(({1} × [[E]]) T© (p, h)) ∈ s1 ∧ π2(({2} × [[E]]) T© (p, h)) ∈ s2}
The definition makes use of an oracle, the infinite sequence p, to determine the
order in which the events from each trace are sequenced. π2 is a projection
operator returning the second element of a pair, and T© is an operator filtering
pairs of sequences with respect to pairs of elements.

Weak sequencing, s1 � s2, is the set of all traces obtained by selecting one
trace h1 from s1 and one trace h2 from s2 such that on each lifeline, the events
from h1 are ordered before the events from h2:

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h� l = h1 � l � h2 � l} (3)

where L is the set of all lifelines, � is the concatenation operator on sequences,
and h� l is the trace h with all events not taking place on the lifeline l removed.

Time constraint keeps only traces that are in accordance with the constraint:

s � C def= {h ∈ s | h |= C} (4)

where h |= C holds if the timestamps in h does not violate C.
The semantics [[d]] of a sequence diagram d is given as a pair (p, n), where p is

the set of positive and n the set of negative traces. Parallel composition, weak
sequencing and time constraint and inner union (�) of such pairs are defined as
follows:

(p1, n1) ‖ (p2, n2)
def= (p1 ‖ p2, (n1 ‖ (p2 ∪ n2)) ∪ (n2 ‖ p1)) (5)

(p1, n1) � (p2, n2)
def= (p1 � p2, (n1 � (n2 ∪ p2)) ∪ (p1 � n2)) (6)

(p, n) � C def= (p � C, n ∪ (p � ¬C)) (7)

(p1, n1) � (p2, n2)
def= (p1 ∪ p2, n1 ∪ n2) (8)

Finally, the semantics of the sequence diagram operators of interest in this
paper are defined by:

[[d1 alt d2]] def= [[d1]] � [[d2]] (9)

[[d1 par d2]] def= [[d1]] ‖ [[d2]] (10)

[[d1 seq d2]] def= [[d1]] � [[d2]] (11)

[[d tc C]] def= [[d]] � C (12)

[[skip]] def= ({〈〉}, ∅) (13)

where tc is the operator used for time constraints and skip is the empty diagram
(i.e. doing nothing). Definitions of other operators may be found in e.g. [5].

www.manaraa.com

140 O. Halvorsen, R.K. Runde, and Ø. Haugen

5 The Formal Semantics of Time Exceptions

In Sect. 3 we informally explained the semantics of time exceptions. In this
section we define the semantics formally, based on the formalism introduced in
Sect. 4. Furthermore we give theorems stating some desirable properties related
to time exceptions and refinement. Due to lack of space, we have omitted the
proofs from this paper. However, proofs may be found in [3].

5.1 Definitions

An exception diagram is mainly specified using the same operators as ordinary
sequence diagrams, and its semantics may be calculated using the definitions
given in Sect. 4. As explained in Sect. 3, the additional constructs used in excep-
tion diagrams is that the exception handling always ends with either return or
terminate. Formally, the semantics of an exception (sub-)diagram marked with
either return or terminate is defined by:

[[d return]] def= [[d]] (14)

[[d terminate]] def= appendTT ([[d]]) (15)

where appendTT is a function appending a special termination event TT to
every trace in its operand (i.e. all the positive and negative traces in [[d]]).

With this new termination event, weak sequencing of trace sets must be re-
defined so that traces that end with termination are not continued:

s1 � s2
def= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : (16)

(term(h1) ∧ h = h1) ∨ (¬term(h1) ∧ ∀l ∈ L : h� l = h1 � l � h2 � l)}

where term(h1) is true if the trace h1 ends with TT , and false otherwise.
For parallel composition of trace sets, the traces may be calculated as before

and then removing all events that occur after TT from the trace:

s1 ‖ s2
def= {h ∈ H | ∃h′ ∈ s1 ‖′ s2 : h = chopTT (h′)} (17)

where ‖′ is parallel composition as defined by definition 2 and chopTT is a
function removing all events occurring after a potential TT in the trace.

A sequence diagram d marked as catching termination events then has the
semantic effect that the termination mark is removed from the trace, meaning
that the trace continues as specified by the diagram that is enclosing d:

[[d catch]] def= removeTT ([[d]]) (18)

where removeTT is a function removing TT from all traces in its operand.
Finally, we need to define the semantics of a sequence diagram which contains

exceptions. The kind of exceptions considered in this paper is always connected
to a time constraint on an event. Syntactically, we write d tc (C exception e)

www.manaraa.com

Time Exceptions in Sequence Diagrams 141

to specify that d is a sequence diagram with time constraint C, and that the
sequence diagram e specifies the exception handling in case C is violated. We
use q(C) to denote the event constrained by C, and ll(C) to denote the lifeline
on which this event occurs.

Obviously, a trace should be negative if the exception handling starts before
the time constraint is actually violated. As an example, consider the specifica-
tion of EnterPin in Fig. 2. Here, we have the constraint t6 ≤ t1 + 5 as explained
in Sect. 4. Letting t7 be the timestamp of the sending of the message in User-
LeftCard, we then intuitively have the corresponding constraint t7 > t1 + 5.
Formally, we let eC be the exception diagram where the time constraint C has
been transformed into the corresponding time constraint for the first event in e
(or several such constraints if there is a choice of first event for e).

The semantics of a sequence diagram with an exception is then defined by:

[[d tc (C exception e)]] def= [[d tc C]] � (19)
{h ∈ H | h� ll(C) ∈ [[d[eC/q(C)]]]� ll(C)} S© [[d[skip/q(C)] par eC]]

where d[dnew/dold] is the sequence diagram d with the sub-diagram dnew sub-
stituted for dold, S© is a filtering operator such that S S© (p, n) is the pair (p, n)
where all traces that are not in the set S are removed, h ∈ (p, n) is a short-hand
for h ∈ p ∨ h ∈ n, and � is overloaded from traces to pairs of sets of traces in
standard pointwise manner.

In definition 19, the first part corresponds to the semantics without the ex-
ception. The second part is all traces where the event q(C) has not occurred,
and the exception handling is performed instead. [[d[skip/q(C)] par eC]] gives
the diagram d without the triggering event q(C), executed in parallel with the
exception e. However, this set is too comprehensive as we require that the life-
line of the triggering event, the lifeline ll(C), must perform all of the exception
handling before continuing with the original diagram. This is expressed by the
set preceding the filtering operator.

5.2 Refinement

TimedSTAIRS [4] defines supplementing and narrowing as two special cases of
refinement. Supplementing means adding more positive or negative traces to the
sequence diagram, while narrowing means redefining earlier inconclusive traces as
negative. Formally, a diagram d′ with semantics (p′, n′) is said to be a refinement
of another diagram d with semantics (p, n), written d � d′, iff

n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (20)

It should be clear from our explanations in Sect. 3 that adding exception han-
dling to a sequence diagram constitutes a refinement. Adding a time constraint
is an example of narrowing, as traces with invalid timestamps are moved from
positive to negative when introducing the time constraint. More generally, we
have the following theorem:

www.manaraa.com

142 O. Halvorsen, R.K. Runde, and Ø. Haugen

Theorem 1. Assuming that the exception diagram e is not equivalent to the
triggering event q(C), i.e. [[e]] �= ({〈q(C)〉}, ∅), we have that

1. d � d tc C
2. d tc C � d tc (C exception e)
3. d � d tc (C exception e)

Finally, the following theorem demonstrates that for a diagram containing ex-
ceptions, the normal and exceptional behavior may be refined separately:

Theorem 2. Refinement is monotonic with respect to exceptions as defined by
definition 19, i.e.:

d � d ∧ e � e′ ⇒ d tc (C exception e) � d′ tc (C exception e′)

6 Conclusions

We have shown that introducing time exceptions improve the completeness of
sequence diagram descriptions while keeping the readability of the main spec-
ification. We have defined concrete notation for exceptions built on existing
symbols of UML 2.1 and the simple time notation. Finally, we have given a
precise formal definition of time exceptions and shown that our concepts are
compositional since refinement is monotonic with respect to exceptions.

References

1. ETSI. The Testing and Test Control Notation version 3 (TTCN-3); Part 1: TTCN-3
Core Language, document: European Standard (ES) 201 873-1 version 2.2.1 (2003-
02). Also published as ITU-T Recommendation Z.140 edition, 2003.

2. Oddleif Halvorsen and Øystein Haugen. Proposed notation for exception han-
dling in UML 2 sequence diagrams. In Australian Software Engineering Conference
(ASWEC), pages 29–40. IEEE Computer Society, 2006.

3. Oddleif Halvorsen, Ragnhild Kobro Runde, and Øystein Haugen. Time exceptions
in sequence diagrams. Technical Report 344, Department of Informatics, University
of Oslo, 2006.

4. Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. In Scenarios: Models,
Transformations and Tools, volume 3466 of LNCS, pages 1–25. Springer, 2005.

5. Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen. Why
timed sequence diagrams require three-event semantics. Technical Report 309, De-
partment of Informatics, University of Oslo, 2005.

6. Object Management Group. OMG Unified Modeling Language 1.4, 2000.
7. Object Management Group. UML profile for Schedulability, Performance and Time

Specification, document: ptc/05-01-02 edition, 2005.
8. Object Management Group. UML Testing Profile, document: ptc/05-07-07 edition,

2005.
9. Object Management Group. UML 2.1 Superstructure Specification, document:

ptc/06-04-02 edition, 2006.

www.manaraa.com

Applying Model Intelligence Frameworks for
Deployment Problem in Real-Time and

Embedded Systems

Andrey Nechypurenko1, Egon Wuchner1, Jules White2,
and Douglas C. Schmidt2

1 Siemens AG, Corporate Technology (SE 2), Otto-Hahn-Ring 6,
81739 Munich, Germany

{andrey.nechypurenko, egon.wuchner}@siemens.com
2 Vanderbilt University, Department of Electrical Engineering and Computer Science,

Box 1679 Station B, Nashville, TN, 37235, USA
{jules, schmidt}@dre.vanderbilt.edu

Abstract. There are many application domains, such as distributed
real-time and embedded (DRE) systems, where the domain constraints
are so restrictive and the solution spaces so large that it is infeasible
for modelers to produce correct solution manually using a conventional
graphical model-based approach. In DRE systems the available resources,
such as memory, CPU, and bandwidth, must be managed carefully to
ensure a certain level of quality of service. This paper provides three
contributions to simplify modeling of complex application domains: (1)
we present our approach of combining model intelligence and domain-
specific solvers with model-driven engineering (MDE) environments, (2)
we show techniques for automatically guiding modelers to correct solu-
tions and how to support the specification of large and complex systems
using intelligent mechanisms to complete partially specified models, and
(3) we present the results of applying an MDE tool that maps software
components to Electronic Control Units (ECUs) using the typical auto-
motive modeling and middleware infrastructure.

Keywords: modeling, Prolog, constraint solver, model completion,
model checking, automotive.

1 Introduction

Graphical modeling languages, such as UML, can help to visualise certain aspects
of the system and automate particular development steps via code-generation.
Model-driven engineering (MDE) tools and domain-specific modeling languages
(DSMLs) [3] are graphical modeling technologies that combine high-level visual
abstractions that are specific to a domain with constraint checking and code-
generation to simplify the development of certain types of systems. In many
application domains, however, the domain constraints are so restrictive and the
solution spaces so large that it is infeasible for modelers to produce correct so-
lutions manually. In these domains, MDE tools that simply provide solution

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 143–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

144 A. Nechypurenko et al.

correctness checking via constraints provide few benefits over conventional ap-
proaches that use third-generation languages.

Regardless of the modeling language and notation used, the inherent complex-
ity in many application domains is the combinatorial nature of the constraints,
and not the code construction per se. For example, specifying the deployment
of software components to hardware units in a car in the face of configuration
and resource constraints can easily generate solution spaces with millions or
more possible deployments and few correct ones, even when only scores of model
entities are present. For these combinatorially complex modeling problems, it
is impractical, if not impossible, to create a complete and valid model manu-
ally. Even connecting hundreds of components to scores of nodes by pointing
and clicking via a GUI is tedious and error-prone. As the number of modeling
elements increases into the thousands, manual approaches become infeasible.

To address the challenges of modeling combinatorially complex domains,
therefore, we need techniques to reduce the cost of integrating a graphical mod-
eling environment with Model Intelligence Guides (MIGs), which are automated
MDE tools that help guide users from partially specified models, such as a model
that specifies components and the nodes they need to be deployed to but not
how they are deployed, to complete and correct ones, such as a model that not
only specifies the components to be deployed but what node hosts each one.
This paper describes techniques for creating and maintaining a Domain Intelli-
gence Generator (DIG), which is an MDE that helps modelers solve combinato-
rially challenging modeling problems, such as resource assignment, configuration
matching, and path finding.

The rest of the paper is organised as follows: Section 2 discusses challenges
of creating deployment models in the context of the EAST-EEA Embedded
Electronic Architecture [1] which is the European Union research project and is
the predecessor of the AUTOSAR [2] middleware and modeling standard. We
use EAST-EEA architecture as a motivating example; Section 3 describes key
concepts used to create and customize MIGs; Section 4 shows the results of
applying MIGs to component deployments; and Section 5 presents concluding
remarks and outlines future work.

2 Motivating Example

EAST-EEA defines the embedded electronic architecture, structure of the auto-
motive middleware. The goal of EAST-EEA is to standardize solutions to many
problems that arise when developing large-scale, distributed real-time and em-
bedded (DRE) systems for the automotive domain. For instance, concert efforts
is required to relocate components between Electronic Control Units (ECUs),
i.e., computers and micro-controllers running software components within a car.
Key complexities of relocation include: (1) components often have a many con-
straints that need to be met by the target ECU and (2) there are many pos-
sible deployments of components to ECUs in a car and it is hard to find the
optimal one.

www.manaraa.com

Applying Model Intelligence Frameworks 145

For example, it is hard to manually find a set of interconnected nodes able to
run a group of components that communicate via a bus. Modelers must deter-
mine whether the available communication channels between the target ECUs
meet the bandwidth, latency, and framing constraints of the components that
communicate through them. In the automotive domain—as with other embed-
ded systems domains— it is also important to reduce the overall cost of the
solution, which necessitates optimizations, such as finding deployments that use
as few ECUs as possible or minimize bandwidth to allow cheaper buses. It is
infeasible to find these solutions manually for a production systems.

To illustrate the practical benefits of generating and integrating MIGs with a
DSML, we describe an MDE tool we developed to solve EAST-EEA constraints
for validly deploying software components to ECUs. There are two architectural
views in EAST-EEA based systems:

– The logical collaboration structure that specifies which components that
should communicate with each other via which interfaces, and

– The physical deployment structure that captures the capabilities of each
ECU, their interconnecting buses, and their available resources.

Historically, automotive developers have manually specified the mapping from
components in the logical view to ECUs in the physical view via MDE deploy-
ment tools, as shown in Figure 1. This approach worked relatively well when
there were a small number of components and ECU. Modern cars, however, can
be equipped with 80 or more ECUs and several hundred or more software com-
ponents. Simply drawing arrows from 160 components to 80 ECUs is tedious.
Moreover, many requirements constrain which ECUs that can host certain com-
ponents, including the amount of memory required to run, CPU power, pro-
gramming language, operating system type and version, etc. These constraints
must be considered carefully when deciding where to deploy a particular compo-
nent. The problem is further exacerbated when developers consider the physical
communication paths and aspects, such as available bandwidth in conjunction
with periodical real-time messaging.

The remainder of this paper shows how the EAST-EEA MDE tool we devel-
oped helps automate the mapping of software components to ECUs in EAST-
EEA models without violating the known constraints. The following sections
describe our approach and show how MIGs can significantly reduce the com-
plexity of creating EAST-EEA deployment models.

3 Domain-Specific Model Intelligence

Based on the challenges related to the EAST-EEA example presented in Sec-
tion 2, the goals of our work on MIGs are to (1) specify an approach for guiding
modelers from partially specified models to complete and coorrect ones and
(2) automate the completion of partially specified models using information ex-
tracted from domain constraints.

www.manaraa.com

146 A. Nechypurenko et al.

Component1
Software Software

Component3
Software

ComponentNComponent2
Software

Gateway

RTE RTE

logical
structure

physical structure

...

Virtual Function Bus

Tool Supporting Deployment of Software Components

Mapping

Software
Component2

Software
ComponentN

Software
Component1

Basic Software

RTE

Basic Software Basic Software

ECU1 ECU2 ECU3

Fig. 1. Mapping from the logical collaboration to the physical deployment structure

In previous work [5,4], we showed how MDE tools and DSMLs can improve
the modeling experience and bridge the gap between the problem and solution
domain by introducing domain-specific abstractions. At the heart of these efforts
is the Generic Eclipse Modeling System (GEMS), which provides a convenient
way to define the metamodel, i.e., the visual syntax of the DSML. Given a
metamodel, GEMS automatically generates a graphical editor that enforces the
grammar specified in the DSML. GEMS provides convenient infrastructure (such
as built-in support for the Visitor pattern) to simplify model traversal and code
generation. We used GEMS as the basis for our MIGs EAST-EEA deployment
modeling tool and our work on domain-specific model intelligence.

3.1 Domain Constraints as the Basis for Automatic Suggestions

A key research challenge was determining how to specify the set of model con-
straints so they could be used by MIGs not only to check the correctness of the
model, but also to guide users through a series of model modifications to bring it
to a state that satisfies the domain constraints. We considered various approaches
for constraint specification language, including Java, the Object Constraint Lan-
guage (OCL), and Prolog. To evaluate the pros and cons of each approach,
we implemented our EAST-EEA deployment constraints in each of the three
languages.

As a result of this evaluation, we selected Prolog since it provided both con-
straint checking and model suggestions. In particular, Prolog can return the set
of possible facts from a knowledge base that indicate why a rule evaluated to

www.manaraa.com

Applying Model Intelligence Frameworks 147

“true.” The declarative nature of Prolog significantly reduced the number of lines
of code written to transform an instance of a DSML into a knowledge base and
to create constraints (its roughly comparable to OCL for writing constraints).
Moreover, Prolog enables MIGs to derive sequences of modeling actions that
converts the model from an incomplete or invalid state to a valid one. As shown
in Section 1, this capability is crucial for domains, such as deployment in com-
plex DRE systems, where manual model specification is infeasible or extremely
tedious and error-prone.

The remainder of this section describes how Domain Intelligence Generation
(DIG) uses Prolog and GEMS to support the creation of customizable and exten-
sible domain-specific constraint solver and optimization frameworks for MIGs.
Our research focuses on providing modeling guidance and automatic model com-
pletion, as described below.

3.2 Modeling Guidance On-the-Fly

To provide domain-specific model intelligence, an MDE tool must capture the
current state of a model and reason about how to assist and guide modelers. To
support this functionality, MIGs use a Prolog knowledge base format that can be
parameterized by a metamodel to create a domain-specific knowledge base. GEMS
metamodels represent a set of model entities and the role-based relationships be-
tween them. For each model, DIG populates a Prolog knowledge base using these
metamodel-specified entities and roles. For each entity, DIG generates a unique id
and a predicate statement specifying the type associated with it.

In the context of our EAST-EEA example, a model is transformed into the
predicate statement component(id), where id is the unique id for the component.
For each instance of a role-based relationship in the model, a predicate statement
is generated that takes the id of the entity it is relating and the value it is relating
it to. For example, if a component with id 23 has a TargetHost relationship to
a node with id 25 the predicate statement targethost(23,25) is generated. This
predicate statement specifies that the entity with id 25 is a TargetHost of the
entity with id 23. Each knowledge base generated by DIG provides a domain-
specific set of predicate statements.

The domain-specific interface to the knowledge base provides several ad-
vantages over a generic format, such as the format used by a general-purpose
constraint solver like CLIPS. First, the knowledge base maintains the domain-
specific notations from the DSML, making the format more intuitive and read-
able to domain experts. Second, maintaining the domain-specific notations allows
the specification of constraints using domain notations, thereby enabling devel-
opers to understand how requirements map to constraints. Third, in experiments
that we conducted, writing constraints using the domain-specific predicates pro-
duced rules that had fewer levels of indirection and thus outperformed rules
written using a generic format. In general, the size of the performance advantage
depended on the generality of the knowledge base format. To access properties
of the model entities, the predicate syntax presents the most specific knowledge

www.manaraa.com

148 A. Nechypurenko et al.

base format. Given an entity id and role name, the value can be accessed with
the statement role(id,Value), which has exactly zero or one facts that match it.

Based on this domain-specific knowledge base, modelers can specify
user-defined constraints in form of Prolog rules for each type of metamodel
relationship. These constraints semantically enrich the model to indicate the re-
quirements of a correct model. They are also used to automatically deduce the
sets of valid model changes to create a correct model.

For example, consider the following constraint to check whether a node (ECU)
is a valid host of a component:

is a valid component targethost(Comp,Node). It can be used to both check a
Component to Node combination (e.g.,
is a valid component targethost(23,[25]).) and to find valid Nodes that can play
the TargetHost role for a particular component (e.g.,
is a valid component targethost(23,Nodes).). This latter example uses Prolog’s
ability to deduce the correct solution, i.e., the Nodes variable will be assigned
the list of all constraint-valid nodes for the TargetHost role of the specified
component. This example illustrates how constraints can be used to check and
to generate the solution, if one exists.

Figure 2 shows how dynamic suggestions from Prolog are presented to model-
ers. The upper part of the figure shows the fragment of the metamodel that

Fig. 2. Highlighting valid target host

describes the “Deployment” relationship between “Component” and “Node”
model entities. The lower part of the picture shows how the generated edi-
tor displays the corresponding entity instances. This screenshot was made at
the moment a modeler had begun dragging a connection begining from the
“ABS” component. The rectangle around “Host10” labelled “Valid TargetH-
ost” is drawn automatically as a result of triggering the corresponding solver
rule and receiving a valid solution as feeback. GEMS also can also trigger ar-
bitrary Prolog rules from the modeling tool and incorporate their results back
into a model. This mechanism can be used to solve for complete component to
ECU deployments and automatically add deployment relationships based on a
(partially) complete model.

www.manaraa.com

Applying Model Intelligence Frameworks 149

To enable modeling assistance, different subsystems must collaborate within
the modeling environment. It is the responsibility of the modeler (or MDE tool
creator) to provide the set of constraints and supply solvers for new constraint
types. The GEMS metamodel editor updates the knowledge base and incorpo-
rates the new rules into the generated MIG. User-defined solver(s) can be based
on existing Prolog algorithms, the reusable rules generated by GEMS, or a hy-
brid of both. Solvers form the core of the basic MIG generated by GEMS. Below
we describe the solver we developed for completing partially specified models in
our EAST-EEA deployment tool.

3.3 Model Completion Solvers

Using a global deployment (completion) solver, it is possible to ask for the com-
pletion of partially specified models constrained by user-defined rules. For ex-
ample, in the EAST-EEA modeling tool, the user can specify the components,
their requirements, the nodes (ECUs), and their resources and ask the tool to
find a valid deployment of components to nodes. After deploying the most crit-
ical components to some nodes by using MIGs step-wise guidance, modelers
can trigger a MIG global deployment solver to complete the deployment. This
solver attempts to calculate an allocation of components to nodes that observes
the deployment constraints and update the connections between components
and nodes accordingly. This global solver can aim for an optimal deployment
structure by using constraint-based Prolog programs or it could integrate some
domain-specific heuristics, such as attempting to find a placement for the com-
ponents that use the most resources first.

In some cases, however, the modeled constraints cannot be satisfied by the
available resources. For example, in a large EAST-EEA model, a valid bin-
packing of the CPU requirements for the components into EPUs may not exist.
In these cases the complexity of the rules and entity relationships could make it
extremely hard to deduce why there is no solution and how to change the model
to overcome the problem. For such situations, we developed a solver that can
identify failing constraints and provide suggestions on how to change the model
to make the deployment possible.

4 Case Study: Solving EAST-EEA Deployment Problem

To validate our DIG MDE tool, we created a DSML for modeling EAST-EEA de-
ployment problems. This DSML enables developers to specify partial solutions
as sets of components, requirements, nodes (ECUs), and resources. A further
requirement was that the MIGs should produce both valid assignments for a
single component’s TargetHost role and global assignments for the TargetHost
role of all components. In the automotive domain certain software components
often cannot be moved between ECUs from one model car to the next due
to manufacturing costs, quality assurance, or other safety concerns. In these

www.manaraa.com

150 A. Nechypurenko et al.

situations, developers must fix the TargetHost role of certain components and
allow MIGs to solve for valid assignments of the remaining unassigned component
TargetHost roles.

For the first step, we created a deployment DSML metamodel that allows
users to model components with arbitrary configuration and resource require-
ments andnodes (ECUs) with arbitrary sets of provided resources. Each com-
ponent configuration requirement is specified as an assertion on the value of a
resource of the assigned TargetHost. For example, OSVersion > 3.2 would be
a valid configuration constraint. Resource constraints were created by specifying
a resource name and the amount of that resource consumed by the component.
Each Node could only have as many components deployed to it as its resources
could support. Typical resource requirements were the RAM usage and CPU
usage.

Each host can provide an arbitrary number of resources. Constraints compar-
isons on resources were specified using the <, >, -, and = relational operators
to denote that the value of the resource with the same name and type (e.g., OS
version) must be less, greater, or equal to the value specified in requirement.
The “-” relationship indicates a summation constraint, i.e., the total value of
the demands on a resource by the components deployed to the providing node
must not exceed the amount present on the node. After defining the metamodel
and generating the graphical editor for the deployment DSML using GEMS,
we added a set of Prolog constraints to enforce the configuration and resource
constraint semantics of our models.

4.1 Defining Constraints and Solvers

Our constraint rules specified that for each child requirement element of a com-
ponent, a corresponding resource child of the TargetHost must satisfy the re-
quirement. The core part of the configuration constraint rule is as following.

is_a_valid_component_targethost(Owner, Value) :-
(self_targethost(Owner, [Value]), ! %deployed
;
(is_a(Value,node),
self_requires(Owner, Requirements),
forall(member(Req,Requirements),
(requirement_to_resource(Req, Value, Res),
requirement_resource_constraint(Req, Res))

))).

These lines of code are providing not only configuration constraint checking for
an arbitrary set of requirements and resources but also enabling domain-specific
GEMS editors to provide valid suggestions for deploying a component. Moreover,
this solution was intended as a proof-of-concept to validate the approach and
thus could be implemented with even fewer lines of code. The rest of the required
predicates to implement the solver were generated by GEMS.

www.manaraa.com

Applying Model Intelligence Frameworks 151

In our experiments with global solvers, Prolog solved a valid global deployment
of 900 components to 300 nodes in approximately 0.08 seconds. This solution
met all configuration constraints.

The rules required for solving for valid assignments using resource constraints
were significantly more complicated since resource constraints are a form of bin-
packing (an NP-Hard problem). We were able to devise heuristic rules in Prolog,
however, that could solve a 160 component and 80 ECU model deployment in ap-
proximately 1.5 seconds and an entire 300 component and 80 ECU deployment,
a typical EAST-EEA sized problem, in about 3.5 seconds. These solution times
are directly tied to the difficulty of the problem instance. For certain instances,
times could be much higher, which would make the suggestive solver from Sec-
tion 3 discussed in the previous section applicable. In cases where the solver ran
too long, the suggestive solver could be used to suggest ways of expanding the
underlying resources and making the problem more tractable.

5 Concluding Remarks

The work presented in this paper addresses scalability problems of conventional
manual modeling approaches. These scalability issues are particularly problem-
atic for domains that have large solutions spaces and few correct solutions. In
such domains, it is often infeasible to create correct models manually, so con-
straint solvers are therefore needed.

Turning a DSML instance into a format that can be used by a constraint
solver is a time-consuming task. Our DIG MDE tool generates a domain-specific
constraint solver that leverages a semantically rich knowledge base in Prolog
format. It also allows users to specify constraints in declarative format that can
be used to derive modeling suggestions.

GEMS and the MIGs generation framework is an open-source project available
from: www.eclipse.org/gmt/gems or www.sf.net/projects/gems.

References

1. East-eea embedded electronic architecture web site - http://www.east-eea.net. 2004.
2. Automotive open system architecture - http://www.autosar.org/find02 ns6.php.

2006.
3. J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4):110–

111, 1997.
4. J. White and D. C. Schmidt. Simplifying the development of product-line customiza-

tion tools via mdd. In Workshop: MDD for Software Product Lines, ACM/IEEE
8th International Conference on Model Driven Engineering Languages and Systems,
October 2005.

5. J. White and D. C. Schmidt. Reducing enterprise product line architecture
deployment costs via model-driven deployment and configuration testing. In
13th Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, 2006.

www.manaraa.com

OCL for (Meta-)Models in Multiple Application
Domains

Dan Chiorean1, Birgit Demuth2, Martin Gogolla3, and Jos Warmer4

1 “Babeş-Bolyai” University of Cluj-Napoca, Romania
2 Technische Universität Dresden, Germany

3 University of Bremen, Germany
4 Ordina, The Netherlands

chiorean@cs.ubbcluj.ro, bd1@inf.tu-dresden.de,
gogolla@informatik.uni-bremen.de, jos.warmer@ordina.nl

Abstract. The workshop OCLApps 2006 was organized as a part of
MoDELS/UML Conference in Genova, Italy. It continues the series of
five OCL (Object Constraint Language) workshops held at previous
UML/MoDELS conferences between 2000 - 2005. Similar to its predeces-
sors, the workshop addressed both people from academia and industry.
The advent of the MDA (Model Driven Architecture) vision and the
rapid acceptance of MDE (Model Driven Engineering) approaches em-
phasize new application domains (like Semantic Web or Domain Specific
Languages) and call for new OCL functionalities. In this context, the
OCLApps 2006 Workshop, was conceived as a forum enabling researchers
and industry experts to present and debate how the OCL could support
these new requirements.

1 Motivation and Goals

In recent years, MDE, MDA and associated methodologies, multiple approaches
and languages emphasized the role that OCL has to play in MDE development.
Beyond using OCL in querying models, in specifying assertions and operations,
new approaches and visions revealed beneficial usage of OCL to model behavior
description, compilation and evaluation of models, model transformation, and
code generation. All these usages concern modeling languages in general, and
UML in particular. As visual modeling languages evolve, complementary textual
formalisms must evolve in accordance.

The workshop promoted contributions and experience reports related to the
adequacy of OCL specifications, new and classical usages, OCL refactoring and
extensions in order to support new usages of OCL specifications and new appli-
cations domains. Topics of interest included (but were not limited to):

- OCL as a textual formalism for specifying (meta-)models, irrespective of the
abstraction level,

- Use of OCL in Domain Specific Languages (DSLs),
- Use of OCL in specifying model behavior, extensions required for this usage,

examples of applications,

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 152–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

OCL for (Meta-)Models in Multiple Application Domains 153

- Using OCL expressions in specifying aspects,
- OCL usage for navigating and querying models and databases,
- OCL as a neutral standard for specifying multi-tier applications,
- Tools supporting model compilation and execution,
- OCL and Model Transformations, needed extensions, experience reports,
- Using OCL specifications in metamodeling, completeness and correctness of

well-formedness rules,
- OCL and business process modeling,
- OCL and ontology modeling, experience reports on OCL usage in the Se-

mantic Web application domain,
- Experience reports on OCL usage in profile specification and profile usage

in application domains, OCL for the implementation of domain specification
languages, and

- Aspects needing to be clarified in OCL specifications, for example the se-
mantics of undefined values and the evaluation of expressions containing
undefined values, or overriding OCL expressions.

2 Organization

The workshop continued the series of OCL workshops held at previous MOD-
ELS/UML conferences: York, 2000, Toronto, 2001, San Francisco, 2003, Lisbon,
2004, and Montego Bay, 2005. The workshop was organized by Dan Chiorean,
Birgit Demuth, Martin Gogolla, and Jos Warmer. The organizers were at the
same time co-chairs of the Program Committee. Each submission was reviewed
by two to three members of the Program Committee. Based on the reviews, the
decisions regarding papers acceptance were taken unanimously. Three papers
were co-authored by one of the workshop PC members. The review process en-
sured that the authors had no influence on the acceptance/rejection decision for
papers written by them.

The PC (in addition to the workshop organizers) consisted of:

- Thomas Baar (EPFL Lausanne, Switzerland)
- Jordi Cabot (Universitat Oberta de Catalunya, Spain)
- Tony Clark (Xactium, United Kingdom)
- Andy Evans (Xactium, United Kingdom)
- Robert France (Colorado State University, USA)
- Heinrich Hussmann (LMU Munich, Germany)
- Marcel Kyas (University of Oslo, Norway)
- Richard Mitchell (Inferdata, USA)
- Octavian Patrascoiu (LogicaCMG, United Kingdom)
- Mark Richters (EADS, Germany)
- Shane Sendall (Switzerland)
- Peter Schmitt (Universität Karlsruhe, Germany)
- Burkhart Wolff (ETH Zurich, Switzerland)

www.manaraa.com

154 D. Chiorean et al.

3 Topics and Approaches of Accepted Papers

The 18 accepted papers, [DCGW06] cover a large spectrum of OCL related top-
ics. They reflect research contributions and experience reports about using OCL
for models and metamodels in multiple application domains. In order to manage
the paper presentations, the accepted papers were divided into four sections:
new applications, model transformations, implementation of OCL support in
tools and language issues.

In their paper Customer Validation of Formal Contracts, [HJ] Heldal and
Johannisson present a modality of translating OCL assertions into natural lan-
guage. In order to obtain good results, the formal specifications have to comply
with some rules. Considering the natural sequence of activities realized in a
specification process, from informal to formal, the proposal can be viewed as
supporting a kind of round-trip engineering support, helping customers in un-
derstanding whether their informal requirements comply with the formal ones.
As the authors mentioned, taking into account that the formalisms used by
UML have different degrees of formality, the obtained results could be used in a
broader framework for UML model transformation.

Kolovos, Paige and Polack describe in the paper Towards Using OCL for
Instance-Level Queries in Domain Specific Languages, [KPP] an ongoing work
towards defining a rigorous approach meant to align the OCL query and navi-
gation facilities with DSLs. In their approach, the authors used a new language,
very closed to OCL, defined by themselves and named EOL. The work presented
confirmed again that OCL is well-suited for model querying in metamodeling,
where navigating models from one abstraction level to another is a mandatory
requirement.

In the paper OCL-based Validation of a Railway Domain Profile, [Ber] Kirsten
Berkenkötter proves that using UML, tailored by means of dedicated profiles,
represents an alternative to DSLs. Undoubtedly, each of these above mentioned
approaches presents both advantages and drawbacks. Therefore, now, accumu-
lating experiences related to these different ways represents a mandatory task.
Berkenkoötter’s paper, succeeds in proving that using OCL in specifying profiles
for a real application represents a valuable approach. The quantity and quality of
application code, automatically generated, is among the main benefits obtained
by using profiles specified with OCL.

An experience showing that OCL 2.0 is expressive enough to be used as a query
language for model analysis is presented by Joanna Chimiak-Opoka and Chris
Lenz in Use of OCL in a Model Assessment Framework: An experience report,
[COL]. The assessment framework was composed by three different components:
a Modeling Environment, a Model Data Repository and an Analysis Tool. The
considered metamodel was meant to support optimization of clinical processes
in the framework of a real project named MedFlow. The paper proves that using
OCL in real applications is profitable and that using different components (tools)
represents a viable approach.

Tsukasa Takemura and Tetsuo Tamai state that using OCL in modeling busi-
ness processes, their approach can bypass a well-known problem, named the

www.manaraa.com

OCL for (Meta-)Models in Multiple Application Domains 155

“Business-IT gap”. Their position is presented in the paper Rigorous Business
Process Modeling with OCL, [TT]. The approach uses activity diagrams enriched
by OCL expressions. Also, in order to fully support the specific requirements,
appropriate OCL extensions are proposed.

In model transformations, a crucial activity for MDE success, OCL usage
is one preferred approach for researchers. In this context, a metamodel-driven
model interchange was proposed by Dragan Gasevic and his colleagues in On
Interchanging between OWL/SWRL and UML/OCL, [MGG+]. The paper aims
to reuse the results obtained in MDA to Semantic Web Languages. Moreover, the
described work represents a new step towards the reconciliation of Meta Object
Facility (MOF) based languages and Semantic Web Languages. The authors
go beyond the approach established by the OMG’s ODM (Ontology Definition
Metamodel) specification that only addresses mappings between OWL and UML,
and extend this with mappings between SWRL and OCL. The proposals made
by authors are grounded on practical experience.

In the paper Realizing UML Model Transformations with USE, [BB] - Fabian
Büttner and Hanna Bauerdick enrich the specification language of USE with
imperative elements in order to provide a flexible instrument meant to support
experiments with different transformations and transformation formalisms.

A modality for specifying OCL constraints in an automated manner by using
“constraints patterns” is described by Wahler, Koehler and Bruckner in the pa-
per Model-Driven Constraint Engineering, [WKB]. Inspired by design patterns,
the authors prove that the use of patterns could be useful for constraints also.
Patterns support modelers to focus on relevant aspects enabling the use of ver-
ified specifications. The example used for introducing the problem is excellent
from a pedagogical perspective. It proves that even very simple UML models
need in some cases complex OCL specifications. An important conclusion is that
OCL represents the appropriate tool supporting models in a complete and un-
ambiguous manner.

The efficiency of OCL support in large scale modeling environments is ana-
lyzed by Altenhofen, Hettel and Kusterer in the paper entitled OCL support in
an industrial environment, [AHK]. The described problem concerns the reduc-
tion of necessary evaluations for OCL constraints, when the underlying model
changes. The experiences presented by authors were meant to realize an efficient
OCL integration into the next generation modeling infrastructure of SAP, called
MOIN.

Stölzel, Zschaler and Geiger discuss in the paper Integrating OCL and Model
Transformations in Fujaba, [MSG] the integration of the Dresden OCL Toolkit
into the Fujaba Tool Suite. This integration adds OCL support to class diagrams
and makes OCL usable in Fujaba’s model transformations. The Fujaba support
for model transformations gets more powerful, platform independent and easier
to read for developers familiar with OCL. The possibility of using OCL in Fujaba
story diagrams in order to support code generation is also presented. Integrating
different tools like Fujaba, the Dresden OCL Toolkit and Eclipse are among the
most interesting topics approached in this paper.

www.manaraa.com

156 D. Chiorean et al.

An optimization algorithm for the evaluation of OCL constraints used in graph
rewriting based model transformations is presented by Mezei, Levendovszky and
Charaf in their paper Restrictions for OCL constraint optimization algorithms,
[MLC]. This is an important topic because efficient constraint handling is essen-
tial in UML, in metamodeling, and also in model transformation.

Brucker, Doser and Wolff describe in the paper An MDA Framework Support-
ing OCL, [BDWa] a tool chain for processing UML/OCL specifications, including
a proof environment and flexible code generation. In the presented framework,
named SecureUML, OCL supports both model verification and transformation,
including code generation. As the authors mention, using conjoint functionalities
for checking, prooving and transforming offers opportunities for new and up to
now unexpected applications.

Amelunxen and Schürr explain in the paper On OCL as part of the metamod-
eling framework MOFLON, [AS] the role of OCL in the metamodeling frame-
work MOFLON, designed to support the definition of domain specific languages
with MOF, OCL and graph transformations. Beyond this interesting problem,
the authors present a set of constraints (well-formedness rules) which corrects,
completes and improves MOF 2.0 for the application as graph schema language.

In the paper Ambiguity issues in OCL postconditions, [Cab] Cabot identifies
common ambiguities appearing in OCL postconditions and proposes an approach
to automatically disambiguate these situations by means of providing a default
interpretation for each kind of ambiguous expression. The advantages of the
proposed solutions are: a more rigorous specification and a better quality of the
code generated for OCL postconditions.

Akehurst, Howells and McDonald-Maier discuss in the paper UML/OCL -
Detaching the Standard Library, [AHMM] about an OCL Standard Library that
is independent from different modeling languages. Considering the increasing
use of OCL as a query language for models, the independence of the standard
library is an important user requirement that has to be supported by OCL
implementations in DSLs.

The results of a long-term project, intended to provide a formalized, machine-
checkable semantic basis for a theorem proving environment for OCL is described
by Brucker, Doser and Wolff in the paper entitled Semantic Issues of OCL:
Past, Present, and Future, [BDWb]. The final objective of the above mentioned
project, is to make OCL more fit for future extensions towards program verifi-
cations and specification refinement.

The paper Improving the OCL Semantics Definition by Applying Dynamic
Meta Modeling and Design Patterns, [CP] by Chiarad́ıa and Pons presents an
alternative definition for the OCL semantics metamodel by applying the Visitor
design pattern. The proposal claims to avoid circularity in the OCL definition,
and to increase its extensibility, legibility and accuracy.

Süß proposes in the paper Sugar for OCL, [Süß] three shorthand notations for
the layout of OCL in the Latex, HTML, and Unicode (a la ObjectZ) encoding
systems, in order to obtain specifications which more readable.

www.manaraa.com

OCL for (Meta-)Models in Multiple Application Domains 157

4 Discussion and Conclusion

In the following, we summarize some of the topics that were discussed at the
workshop:

- OCL offers support for model transformation, including automated code
generation. In this last context, the OCL use is advantageous from two per-
spectives: firstly, for the support in querying models and secondly, for offering
important additional information for code generation.

- The use of the constraint language in large scale models needs to consider
the efficiency of evaluating specifications.

- As different language extensions are required for an efficient use of OCL in
different domains (like Business Process Modeling or the Semantic Web),
considering OCL as a family of languages becomes a more important re-
quirement.

- Fixing different ambiguities concerning the OCL must be realized.
- As Eclipse tends to be a quasi unanimously tool in the modelers world, effi-

ciently promoting OCL needs strong support within the Eclipse framework.

References

[AHK] Michael Altenhofen, Thomas Hettel, and Stefan Kusterer. OCL support
in an industrial environment. In OCL for (Meta-)Models in Multiple
Application Domains, pages 126–139. TUD-FI06-04.

[AHMM] D. H. Akehurst, W.G.J. Howells, and K.D. McDonald-Maier. UML/OCL
- Detaching the Standard Library. In OCL for (Meta-)Models in Multiple
Application Domains, pages 205–212. TUD-FI06-04.

[AS] C. Amelunxen and A. Schürr. On OCL as part of the metamodeling
framework MOFLON. In OCL for (Meta-)Models in Multiple Application
Domains, pages 182–193. TUD-FI06-04.

[BB] Fabian Büttner and Hanna Bauerdick. Realizing UML Model Transfor-
mations with USE. In OCL for (Meta-)Models in Multiple Application
Domains, pages 96–110. TUD-FI06-04.

[BDWa] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. An MDA Frame-
work Supporting OCL. In OCL for (Meta-)Models in Multiple Application
Domains, pages 166–181. TUD-FI06-04.

[BDWb] Achim D. Brucker, Jürgen Doser, and Burkhart Wolff. Semantic Issues of
OCL: Past, Present, and Future. In OCL for (Meta-)Models in Multiple
Application Domains, pages 213–228. TUD-FI06-04.

[Ber] Kirsten Berkenkötter. OCL-based Validation of a Railway Domain Pro-
file. In OCL for (Meta-)Models in Multiple Application Domains, pages
38–52. TUD-FI06-04.

[Cab] Jordi Cabot. Ambiguity issues in OCL postconditions. In OCL for (Meta-
)Models in Multiple Application Domains, pages 194–204. TUD-FI06-04.

[COL] Joanna Chimiak-Opoka and Chris Lenz. Use of OCL in a Model Assess-
ment Framework: An experience report. In OCL for (Meta-)Models in
Multiple Application Domains, pages 53–67. TUD-FI06-04.

www.manaraa.com

158 D. Chiorean et al.

[CP] Juan Mart́ın Chiarad́ıa and Claudia Pons. Improving the OCL Semantics
Definition by Applying Dynamic Meta Modeling and Design Patterns. In
OCL for (Meta-)Models in Multiple Application Domains, pages 229–239.
TUD-FI06-04.

[DCGW06] Birgit Demuth, Dan Chiorean, Martin Gogolla, and Jos Warmer, editors.
OCL for (Meta-)Models in Multiple Application Domains, TUD-FI06-
04. Institut für Software- und Multimediatechnik, Technische Universität
Dresden, 09 2006. ISSN 1430-211X.

[HJ] Rogardt Heldal and Kristofer Johannisson. Customer Validation of For-
mal Contracts. In OCL for (Meta-)Models in Multiple Application Do-
mains, pages 13–25. TUD-FI06-04.

[KPP] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Towards
Using OCL for Instance-Level Queries in Domain Specific Languages. In
OCL for (Meta-)Models in Multiple Application Domains, pages 26–37.
TUD-FI06-04.

[MGG+] Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and
Vladan Devedzic. On Interchanging Between OWL/SWRL and
UML/OCL. In OCL for (Meta-)Models in Multiple Application Domains,
pages 81–95. TUD-FI06-04.

[MLC] Gergely Mezei, Tihamer Levendovszki, and Hassan Charaf. Restrictions
for OCL constraint optimization algorithms. In OCL for (Meta-)Models
in Multiple Application Domains, pages 151–165. TUD-FI06-04.

[MSG] Steffen Zschaler Mirko Stölzel and Leif Geiger. Integrating OCL and
Model Transformations in Fujaba. In OCL for (Meta-)Models in Multiple
Application Domains, pages 140–150. TUD-FI06-04.

[Süß] Jörn Guy Süß. Sugar for OCL. In OCL for (Meta-)Models in Multiple
Application Domains, pages 240–252. TUD-FI06-04.

[TT] Tsukasa Takemura and Tetsuo Tamai. Rigorous Business Process Mod-
eling with OCL. In OCL for (Meta-)Models in Multiple Application Do-
mains, pages 68–80. TUD-FI06-04.

[WKB] Michael Wahler, Jana Koehler, and Achim D. Brucker. Model-Driven
Constraint Engineering. In OCL for (Meta-)Models in Multiple Applica-
tion Domains, pages 111–125. TUD-FI06-04.

www.manaraa.com

OCL-Based Validation of a Railway Domain
Profile

Kirsten Berkenkötter

University of Bremen,
P.O. Box 330 440,

28334 Bremen, Germany
kirsten@informatik.uni-bremen.de

Abstract. Domain-specific languages become more and more important
these days as they facilitate the close collaboration of domain experts and
software developers. One effect of this general tendency is the increasing
number of UML profiles. UML itself as a popular modeling language is
capable of modeling all kinds of systems but it is often inefficient due to
its wide-spectrum approach. Profiles tailor the UML to a specific domain
and can hence be seen as domain-specific dialects of UML. At the mo-
ment, they mainly introduce new terminology, often in combination with
OCL constraints which describe the new constructs more precisely. As
most tools do not support validation of OCL expressions let alone supple-
menting profiles with OCL constraints, it is difficult to check if models
based on a profile comply to this profile. A related problem is check-
ing whether constraints in the profile contradict constraints in the UML
specification. In this paper, it is shown how to complete these tasks with
the tool USE. As an example, a profile from the railway control systems
domain is taken which describes the use of its modeling elements strictly
my means of OCL. Models based on this profile serve as a foundation
for automated code generation and require unambiguous meaning.

1 Introduction

The current interest in model driven architecture (MDA) [OMG03] and its sur-
rounding techniques like metamodeling and model driven development (MDD)
has also increased the interest in domain-specific languages (DSL) and their de-
velopment. In this context, several standards have been developed like the Meta
Object Facility (MOF) [OMG06] for designing metamodels and the Unified Mod-
eling Language (UML) [OMG05c, OMG05b] as a modeling language which has
become the de-facto standard for modeling languages and is supported by vari-
ous tools. Due to its wide-spectrum approach, UML can be used for modeling all
kinds of systems. This is an advantage as one tool can be used to develop different
kinds of systems. In contrast, it may also lead to inefficiency and inaccuracy as
each domain has its own needs. Another problem are semantic variation points
in UML that are necessary for the wide-spectrum approach but not useful if the
model is used as basis of transformations or code generation. Here, unambiguous
models are needed.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 159–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

160 K. Berkenkötter

A good example are railway control systems that are described in specific
terminology and notation. The domain of control are track networks that consist
of elements like segments, points, or signals. Routes are defined to describe how
trains travel on the network. In addition, there are rules that specify in which
way a network is constructed and how it is operated. Some rules apply to all
kinds of railway systems and some are specific for each kind of railway system,
e.g. tramway or railroads. In principle, UML is capable of modeling such systems.
The problem is that we have to model each kind of railway system with all rules
explicitly. The domain knowledge that covers the common parts of all railway
control systems is not captured in such models. Neither is specific notation that
is used in the domain like symbols for signals and sensors.

Domain-specific languages are a means to overcome these disadvantages
[Eva06]. Designing a new modeling language from scratch is obviously time-
consuming and costly, therefore UML profiles have become a popular mechanism
to tailor the UML to specific domains. In this way, different UML dialects have
been developed with considerably low effort. New terminology based on existing
UML constructs is introduced and further supplied with OCL [OMG05a, WK04]
constraints to specify its usage precisely. Semantics are often described in natural
language just as for UML itself.

With respect to railways, the Railway Control Systems Domain (RCSD) pro-
file has been developed [BH06] as domain-specific UML derivative with formal
semantics. With the help of the profile, the system expert develops track net-
works for different kind of railway systems consisting of track segment, signal,
points, etc. The software specialist works on the same information to develop
controllers. In the end, controller code which satisfies safety-critical requirements
shall be generated automatically. Railway control systems are especially interest-
ing as the domain knowledge gathered in the long history of the domain has to
be preserved while combining it with development techniques for safety-critical
systems. Structural aspects are specified by class and object diagrams (see Fig. 4
and Fig. 5) whose compliance to the domain is ensured by OCL constraints. Se-
mantics are based on a timed state transition system that serves as foundation
for formal transformations towards code generation for controllers as well as for
verification tasks. In this paper, the focus is on the validation of the structural
aspects to ensure the correct and successful application of transformations and
verification. Details about semantics can be found in [PBD+05, BH06].

A problem that has not been tackled until now is validating that the con-
straints of a profile comply to the ones of UML and that models using a profile
comply to this profile. One reason for this is that CASE tools often support
profiles as far as new terminology can be introduced but lack support of OCL
[BCC+05]. One of the few tools that support OCL is USE (UML Specification
Environment) [Ric02, GFB05]. It allows the definition of a metamodel supplied
with OCL constraints and checks whether models based on this metamodel ful-
fill all constraints. Using (a part of) the UML metamodel in combination with
a profile as the USE metamodel allows for fulfilling three goals: (a) Validating
that this profile complies to the UML metamodel as each model has to fulfill

www.manaraa.com

OCL-Based Validation of a Railway Domain Profile 161

the invariants of the UML metamodel and the profile. (b) Validating that class
diagrams comply to the profile. (c) Validating that object diagrams comply to
the profile if the profile describes instances as well as instantiable elements. This
approach has been used to validate the RCSD profile and models based on it.

The paper is organized in the following way: the next section gives a short
introduction to the railway domain, followed by a description of the RCSD profile
and typical constraints in Sec. 3. After that, Sec. 4 describes the validation with
USE on the different levels. At last, the results of this validation approach and
future work are discussed in Sec. 5.

2 Short Introduction to the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain
and their properties. In the railway domain, track elements, sensors, signals, au-
tomatic train runnings, and routes have been proven essential modeling elements
as e.g. described in [Pac02]. They are described shortly in the following, more
details can be found in [BH06]:
Track Elements. The track network consists of segments, crossings, and points.
Segments are rails with two ends, while crossings consist of either two crossing
segments or two interlaced segments. Points allow a changeover from one segment
to another one. Single points have a stem and a branch. Single slip points and
double slip points are crossings with one, resp. two, changeover possibilities.
Sensors. Sensors are used to identify the position of trains on the track network,
i.e. the current track element. To achieve this goal, track elements have entry and
exit sensors located at each end. The number of sensors depends on the allowed
driving directions, i.e. the uni- or bidirectional usage of the track element.
Signals. Signals come in various ways. In general, they indicate if a train may
go or if it has to stop. The permission to go may be constrained, e.g. by speed
limits or by obligatory directions in case of points. As it is significant to know if
a train moves according to signaling, signals are always located at sensors.
Automatic Train Running. Automatic train running systems are used to enforce
braking of trains, usually in safety-critical situations. Automatic train running
systems are also located at sensors.
Route Definition. As sensors are used as connection between track elements,
routes of a track network are defined by sequences of sensors. They can be
entered if the required signal setting of the first signal of the route is set. This
can only be done if all points are in the correct position needed for this route.
Conflicting routes cannot be released at the same time.

3 RCSD Profile

Unfortunately, defining eight stereotypes as suggested by the domain analysis
in Sec. 2 is not sufficient. New primitive datatypes, enumerations, and special

www.manaraa.com

162 K. Berkenkötter

kinds of association to model interrelationships between stereotypes are needed.
Furthermore, UML supports two modeling layers, i.e. the model layer itself (class
diagrams) and the instances layer (object diagrams). In the RCSD profile, both
layers are needed: class diagrams are used to model specific parts of the railway
domain, e.g. tramways or railroad models, while object diagrams show explicit
track layouts for such models. Hence, stereotypes on the object level have to
be defined. For these reasons, the RCSD profile is structured in five parts: the
definition of primitive datatypes and literals, network elements on class level,
associations between these elements, instances of network elements and associ-
ations, and route definitions. In the following, we focus on network elements,
their instances, and routes as the domain knowledge is mostly gathered in these
parts.

3.1 Network Elements

The next part of the profile defines track network elements, i.e. segments, cross-
ing, points, signals, sensors, and automatic train runnings (see Fig. 1). Segment,
Crossing, and Point have in common that they form the track network itself,
therefore they are all subclasses of the abstract TrackElement. Similarly, Single-
Point and SlipPoint are specializations of Point. Enumerations are defined to
specify values of properties. All elements are equipped with a set of constraints
that define which properties must be supported by each element and how it is
related to other elements.

An instance of TrackElement on the model layer must provide several proper-
ties: maximalNumberOfTrains to restrict the number of trains on a track element
at one point in time (mandatory) and limit to give a speed limit (optional). Both
properties have to be integers. The first one has a fixed multiplicity 1, the second

<<stereotype>>
Segment

<<stereotype>>
Crossing

<<stereotype>>
Sensor

0..1

AutomaticRunning
<<stereotype>>0..1

<<enumeration>>

OFF
FAILURE

ON

AutoRunKind
<<enumeration>>

LOW
HIGH
FAILURE

SensorStateKind

GO
STOP

<<enumeration>>
PermissionKind

GO
STOP
FAILURE

<<enumeration>>
SignalStateKind

LEFT
RIGHT

STRAIGHT

<<enumeration>>
RouteKind

<<enumeration>>
PointStateKind

STRAIGHT
LEFT
RIGHT
FAILURE

<<metaclass>>
Class

<<stereotype>>
Point

0..1 <<stereotype>>
TrackElement

<<stereotype>>

<<stereotype>>

SinglePoint

SlipPoint

0..1 <<stereotype>>
Signal

Fig. 1. Network elements of the RCSD profile

www.manaraa.com

OCL-Based Validation of a Railway Domain Profile 163

one may have multiplicities 0..1 or 1. Such requirements for TrackElement are
defined in the following way:

ownedAttribute->one(a | a.name->includes(’maxNumberOfTrains’) and
a.type.name->includes(’Integer’) and
a.upperBound() = 1 and a.lowerBound() = 1 and
a.isReadOnly = true)

To understand the structure of these constraints, a look at the UML metamodel
is helpful. As all network elements are stereotypes of Class from the UML 2.0
Kernel package, we can refer to all properties of Class in our constraints. Prop-
erties on the model level are instances of class Property on the metamodel level,
which are associated to Class by ownedAttribute. As a StructuralFeature, Prop-
erty is also a NamedElement, a TypedElement, and a MultiplicityElement, which
allows to restrain name, type, and multiplicity as shown in the constraint above.
Similar constraints are defined for all network elements.

3.2 Instances of Network Elements

For each non-abstract modeling element and each association, there exists a
corresponding instance stereotype that also defines domain-specific notation. In
Fig. 2, two unidirectional segments connected by a sensor S1 are shown. For
comparison, the same constellation in object notation is given in Fig. 3.

S1

Fig. 2. RCSD notation

exit e2exit
S1:<<Sensor>>Sens

entrye1entry
:<<Segment>>Seg:<<Segment>>Seg

Fig. 3. UML notation

The instances are heavily restricted by OCL constraints as the instance level
serves as the basis for automated code generation, e.g. the limit of track elements
must have a value from N if present. A more interesting constraint is that each
Point has a plus and minus position. One of these has to be STRAIGHT and
the other one LEFT or RIGHT :

slot->select(s1 | s1.definingFeature.name->includes(’minus’) or
s1.definingFeature.name->includes(’plus’))->

one(s2 | s2.value->size()= 1 and
s2.value->first().oclIsTypeOf(InstanceValue) and
s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’STRAIGHT’)) and
slot->select(s1 | s1.definingFeature.name->includes(’minus’) or

s1.definingFeature.name->includes(’plus’))->
one(s2 | s2.value->size()= 1 and

s2.value->first().oclIsTypeOf(InstanceValue) and
(s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’LEFT’) or
s2.value->first()->oclAsType(InstanceValue).instance.name->
includes(’RIGHT’)))

www.manaraa.com

164 K. Berkenkötter

Another example are identification numbers of sensors that have to be unique:
each Sensor must have a property sensorId whose value is unique with respect
to all SensorInstances :

SensorInstance.allInstances->collect(slot)->asSet->flatten->
select(s | s.definingFeature.name->includes(’sensorId’))->

iterate(s:Slot;
result:Set(LiteralSensorId) = oclEmpty(Set(LiteralSensorId)) |
result->including(s.value->first.oclAsType(LiteralSensorId)))->

isUnique(value)

3.3 Route Definitions

Moreover, the profile defines routes and their instances. Each Route is defined
by an ordered sequence of sensor ids. The signal setting for entering the route
and sets of required point positions and of conflicts with other routes are further
necessary information. A typical constraint demands that every sensor id in a
route definition must refer to an existing sensor. Hence, the following constraint
must hold for each RouteInstance:

let i:Set(Integer) =
slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->

asSequence->first().value->
iterate(v:ValueSpecification;

result:Set(Integer)=oclEmpty(Set(Integer)) |
result->including(v.oclAsType(LiteralSensorId).value))

in
i->forAll(id | SensorInstance.allInstances->exists(sens |

sens.slot->select(s | s.definingFeature.name->includes(’sensorId’))->
asSequence->first().value->first().

oclAsType(LiteralSensorId).value = id))

4 Validation of Wellformedness Rules with USE

The next step is adapting the profile and its various invariants to USE for the
validation process. USE expects a model in textual notation as input. In our
case, this is the metamodel consisting of (a part of) the UML metamodel and
the profile. Instance models can be checked with respect to the invariants in the
metamodel, both on class and object layer. A similar application of USE with
respect to the four metamodeling layers of UML is shown in [GFB05].

This metamodel file includes both the necessary part of the UML 2.0 meta-
model and the RCSD profile for two reasons: first, the profile cannot exist with-
out its reference metamodel and second, one goal is to check the compliance of
the profile to the metamodel. This task must be performed implicitly as USE
does not check if the given constraints contradict. Instead, we assume the profile
compliant to the metamodel as long as both the constraints in the metamodel
and the constraints in the profile are all valid.

www.manaraa.com

OCL-Based Validation of a Railway Domain Profile 165

4.1 Modeling the UML Metamodel and the RCSD Profile for USE

In the metamodel file, a description of classes with attributes and operations,
associations, and OCL expressions is expected. OCL expressions are either in-
variants as shown in Sec.3, or definitions of operations. For the validation of the
profile, all invariants must be fulfilled by the instance model(s).

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

TramCrossing
<<Crossing>>

<<Sensor>>
TramSensor

TramSegment
<<Segment>>

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

<<RouteConflict>>
Conflicts

routeId:RouteId {readOnly}
kind:RouteConflictKind {readOnly}

Signals
<<SignalSetting>>

sigState:SignalStateKind {readOnly}
signalId:SignalId {readOnly}

dirState:RouteKind[0..1] {readOnly}

Points
<<PointPosition>>

pointId:PointId {readOnly}
pointState:PointStateKind {readOnly}

TramRoute
<<Route>>

routeId:RouteId {readOnly}
routeDefinition:SensorId[0..*] {readOnly, ordered}

actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:Duration {readOnly}

signalId:SignalId {readOnly}

requestTime:TimeInstant

direction:RouteKind

<<Signal>>
TramSignal

TramPoint
<<SinglePoint>>

pointId:PointId {readOnly}
plus:PointStateKind {readOnly}
minus:PointStateKind {ReadOnly}
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}
delta_p:Duration {readOnly}

e4exit

e3exit

e2exit
0..1

1

11

actualState:SensorStateKind
sentTime:TimeInstant
counter:Integer
delta_l:Duration {readOnly}
delta_tram:Duration {readOnly}

sensorId:SensorId {readOnly}

e2exit

e2exit

e1exit

sensor

e3entry

e2entry

e3entry

e1entry

e1entry

e1entry

1

0..1

0..1 0..1

0..1

1

1

1

pointPosrouteConflict

signalSetting{readOnly}
1

signal 0..1

0..* 0..*

entrySeg exitSeg

exitPointentryPoint

{readOnly} {readOnly}

entryCross exitCross

1 1

0..1

0..1

0..1

0..1

0..1

Fig. 4. Tram network definitions - class level

From the UML metamodel, the Kernel package has been modeled with some
modifications: (a) Packages are not needed by the RCSD profile and therefore
skipped in all diagrams, diagram Packages has been omitted completely. (b)
Lower and upper bounds of multiplicities have been changed to LiteralInteger
instead of ValueSpecification for easier handling. One reason is that the invariants
in the context of MultiplicityElement are not specific enough to guarantee that
the ValueSpecification really evaluates to LiteralInteger as necessary. Therefore,
expressions cannot be used to specify multiplicities. The invariants of Multiplic-
ityElement have been adapted to this. (c) Several invariants and operations had
to be rewritten or omitted completely as they are erroneous in the UML specifi-
cation. More information about this problem can be found in [BGG04]. (d) Some
names in the UML specification had to be changed due to conflicts with USE
keywords or multiple usage in the specification which also leads to conflicts. This
problem is also described in [BGG04]. (e) USE does not support UnlimitedNat-
ural as type. This problem has been overcome by using Integer and additional

www.manaraa.com

166 K. Berkenkötter

constraints that restrict corresponding values to N. All in all, 34 invariants have
been specified here.

Profiles are not directly supported by USE. This problem has been overcome
by modeling each RSCD stereotype as a subclass from its metaclass, i.e. a meta-
model extension. All in all, 311 invariants have been specified for the RCSD
profile.

4.2 Compliance of RCSD Model to Profile on Class Level

Evaluating constraints is possible for instances of the given (meta)model. As
an example, a tram network description is used on class level. Tram networks
consist of segments, crossing and single points that are all used unidirectionally.
Furthermore, there are signals, sensors, and routes, but no automatic runnings.
This constellation is shown in Fig. 4.

In USE, an instance model can be constructed step by step by adding in-
stances of classes and associations of the metamodel to an instance diagram.
More convenient is the usage of a *.cmd command file where instance creation
and setting of property values are specified in textual notation.

4.3 Compliance of RCSD Model to Profile on Instance Level

A concrete network of a tram maintenance site with six routes is shown in Fig. 5.
Note that this is diagram is given in RCSD notation and can also be shown in
UML object notation as discussed in Sec. 3. The explicit route definitions have
been omitted for the sake of brevity, but can be easily extracted from Fig. 5.
This diagram has been used for the validation on the instance level. It consists
of 12 segments, 3 crossing, 6 points, 25 sensors, 3 signals, and 6 routes, specified
in a second *.cmd file. The two *.cmd files form a complete instance model of
the metamodel consisting of classes and their instances.

W100

S22−G21.1

G25.1

G24.1

TRAM MAINTENANCE SITE

ROUTE 3: S21−G25.1

ROUTE 5:

G25.0
ROUTE 0:
S20−G21.1

S21−G23.1
ROUTE 2

G23.0

G23.1G20.0

G20.1

G21.0

G21.1

G22.1

ROUTE4: S22−G23.1

G22.9 G24.3G20.3G20.2

W102 W119

G22.3G22.2

W118

G22.0

G20.9 G20.8

W103

W101

G24.2

G22.9

G24.0

G30.1

G29.9

G30.0

S20−G25.1
ROUTE 1:

S21

S20

S22

Fig. 5. Concrete track network - instance level

www.manaraa.com

OCL-Based Validation of a Railway Domain Profile 167

4.4 Results

In this example, all invariants have been fulfilled. The correctness of the OCL
constraints could be easily checked by adding intentional errors like incorrect
association ends or signals with the same id. USE facilitates tracing of such
errors by (a) showing which instance of the metamodel has violated an invariant
and by (b) decomposing the invariant in all sub-clauses and giving the respective
evaluation.

For the validation process, some effort with respect to the USE metamodel
is unavoidable. Fortunately, the metamodel and profile have to be modeled only
once for each profile. The part of the UML metamodel that has to be included
varies from profile to profile depending on the metaclasses references by stereo-
types. The current version of the USE metamodel consists of approximately 4000
lines. With respect to the RCSD profile, the instance model on class level has to
be modeled once per specific railway system, e.g. once for trams. With this part
of the instance model, all kinds of concrete track layouts can be checked. The
tram example consists of approximately 1500 lines of input data to USE. These
can be generated from class diagrams by parsing the output of CASE tools and
adapting them to USE. Concrete track layouts can also be generated, this time
from object diagrams. In this way, all kinds of track layouts for one system can
be checked. The example track layout consists of about 5000 lines.

5 Conclusion

The validation of models of the RCSD profile and the profile itself based on OCL
constraints with USE has been proven useful in several ways. It has been shown
that the profile complies to UML as it is required and that an example model
for tramways is valid in the RCSD context. This makes object diagrams for
such tramways applicable for transformation and verification purposes. Another
effect of the validation with USE was the improvement of the OCL constraints
themselves. As most case tools have no OCL support, it is hard to detect if
constraints exhibit syntax errors or if complicated constraints really have the
intended meaning.

An adaption of the validation process to other profiles can be performed
straightforward. It is possible that the UML metamodel part has to be enhanced
for other profiles as this depends on the metaclasses referenced by stereotypes.
Validation is reasonable in each profile whose application relies on a solid and
unambiguous model.

With respect to the RCSD profile, future work has to investigate the behav-
ioral aspects of track layouts as described in [BH06]. At the moment, only statical
aspects have been examined, but USE can also be applied to the validation and
test of controllers that have been generated for a concrete track network. Passing
trains have to be simulated by changes of sensor values just as route requests by
trains to the controller. Signals and points have to be switched by the controller
with respect to safety conditions like ’only one tram on a point at one point in
time’ or ’only one tram on conflicting routes’. Such safety requirements can also

www.manaraa.com

168 K. Berkenkötter

be expressed in OCL. As train movements just as signal and point switches can
be modeled by changes of variable values, the outcome is always a new object
diagram whose invariants can be checked.

Acknowledgments. Special thanks go to Fabian Büttner and Arne Lindow for
their help with USE and to Ulrich Hannemann for his valuable feedback to the
first versions of this paper and the related work.

References

[BCC+05] Thomas Baar, Dan Chiorean, Alexandre Correa, Martin Gogolla, Heinrich
Hußmann, Octavian Patrascoiu, Peter H. Schmitt, and Jos Warmer. Tool
Support for OCL and Related Formalisms - Needs and Trends. In Jean-
Michel Bruel, editor, Satellite Events at the ModELS‘2005 Conference,
volume 3844 of LNCS, pages 1–9. Springer-Verlag, 2005.

[BGG04] Hanna Bauerdick, Martin Gogolla, and Fabian Gutsche. Detecting OCL
Traps in the UML 2.0 Superstructure. In Thomas Baar, Alfred Strohmeier,
Ana Moreira, and Stephen J. Mellor, editors, Proceedings 7th Interna-
tional Conference Unified Modeling Language (UML’2004), volume 3273
of LNCS, pages 188–197. Springer-Verlag, 2004.

[BH06] Kirsten Berkenkötter and Ulrich Hannemann. Modeling the railway con-
trol domain rigorously with a uml 2.0 profile. In J. Górski, editor, Safecomp
2006, volume 4166 of LNCS, pages 398–411. Springer, 2006. to appear.

[Eva06] Andy Evans. Domain Specific Languages and MDA.
http://www.xactium.com, 2006.

[GFB05] Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On Squeezing M0,
M1, M2, and M3 into a Single Object Diagram. Technical Report LGL-
REPORT-2005-001, Ecole Polytechnique Fédérale de Lausanne, 2005.

[OMG03] Object Management Group. MDA Guide Version 1.0.1, June 2003.
[OMG05a] Object Management Group. OCL 2.0 Specification, version 2.0.

http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.
[OMG05b] Object Management Group. Unified Modeling Language: Superstructure,

version 2.0. http://www.omg.org/docs/formal/05-07-04.pdf, July 2005.
[OMG05c] Object Management Group. Unified Modeling Language (UML) Specifi-

cation: Infrastructure, version 2.0. http://www.omg.org/docs/ptc/04-10-
14.pdf, July 2005.

[OMG06] Object Management Group. Meta Object Facility (MOF) 2.0 Core Spec-
ification. http://www.omg.org/docs/formal/06-01-01.pdf, January 2006.

[Pac02] Joern Pachl. Railway Operation and Control. VTD Rail Publishing,
Mountlake Terrace (USA), 2002. ISBN 0-9719915-1-0.

[PBD+05] Jan Peleska, Kirsten Berkenkötter, Rolf Drechsler, Daniel Große, Ulrich
Hannemann, Anne E. Haxthausen, and Sebastian Kinder. Domain-specific
formalisms and model-driven development for railway control systems. In
TRain workshop at SEFM2005, September 2005.

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and OCL
Constraints, volume 14 of BISS Monographs. Logos Verlag, Berlin, 2002.
Ph.D. thesis, Universität Bremen.

[WK04] Jos Warmer and Anneke Kleppe. Object Constraint Language 2.0. MITP-
Verlag, Bonn, 2004.

www.manaraa.com

OCL Support in an Industrial Environment

Michael Altenhofen1, Thomas Hettel2, and Stefan Kusterer3

1 SAP Research, CEC Karlsruhe,
76131 Karlsruhe, Germany

michael.altenhofen@sap.com
2 SAP Research, CEC Brisbane,

Brisbane, Australia
thomas.hettel@sap.com

3 SAP AG, 69190 Walldorf, Germany
stefan.kusterer@sap.com

Abstract. In this paper, we report on our experiences integrating OCL
evaluation support in an industrial-strength (meta-)modeling infrastruc-
ture. We focus on the approach taken to improve efficiency through what
we call impact analysis of model changes to decrease the number of nec-
essary (re-)evaluations. We show how requirements derived from appli-
cation scenarios have led to design decisions that depart from or resp.
extend solutions found in (academic) literature.

1 Introduction

The MDA [1] vision describes a framework for designing software systems in a
platform-neutral manner and builds on a number of standards developed by the
OMG.

With its upcoming standard-compliant modeling infrastructure, SAP plans
to support large-scale MDA scenarios with a multitude of meta-models that put
additional requirements on the technical solution, that are normally considered
out-of-scope in academic environments. This may lead to solutions that may
be considered inferior at first sight, but actually result from a broader set of
(sometimes non-functional) requirements.

This paper focuses on one particular aspect in SAP’s modeling infrastruc-
ture, namely an efficient support for the OCL [3] constraint language. We will
show how he have modified some of the existing approaches to better fit the
requirements we’re facing in our application scenarios.

The rest of the paper is organized as follows: In Section 2, we will give an
overview of SAP’s modeling infrastructure focusing on features that are consid-
ered critical in large-scale industrial environments. Then, in Section 3, we will
summarize related work in the area of OCL impact analysis that has guided
our work leading to a more detailed description of our approach in Section 4.
In Section 5, we will report on first experimental experiences and conclude in
Section 6 by summarizing our work.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 169–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

170 M. Altenhofen, T. Hettel, and S. Kusterer

2 The SAP Modeling Infrastructure (MOIN)

Mid of 2005, SAP launched “Modeling Infrastructure” (MOIN), as development
project within the NetWeaver1 organization. The goal of the MOIN project is to
implement the consolidated platform for SAP’s next generation of modeling tools.

2.1 Overview on the Architecture and Services of MOIN

The requirements for MOIN resulted in an architecture, which consists of the
components described in the following sections as major building blocks.

Repository. First and foremost, MOIN is a repository infrastructure for meta-
models and models capable of storing any MOF compliant meta-model together
with all the associated models. For accessing and manipulating this content,
client applications can use JMI compliant interfaces, which are generated for the
specific meta-model.

The MOF standard does not impose any concepts for physical structuring
of model content onto the implementer, however, some notion of a meaningful
group of model elements is required. For that, MOIN offers the concept of model-
partitions, which allows users splitting up the graphs represented by model con-
tent into manageable buckets loaded and stored by the MOIN repository.

Query Mechanism. JMI is well suited for exploring models, by accessing
attributes, following links etc. However, for many use-cases more powerful means
of data retrieval are needed. The MOIN query API (including a query language)
therefore provides flexible methods for retrieving model elements, based on their
types, attribute values, relationships to other model elements etc.

Eventing Framework. Events can be used by MOIN clients to receive notifica-
tions for e.g. changes on models. This supports an architecture of loosely coupled
components. The event types supported by the framework will be discussed in
section 4.

Model Transformation Infrastructure (MTI). The model transformation
infrastructure (MTI) is planned as basis for model-to-model and model-to-text
transformations. MTI will provide a framework for defining and executing these
transformations, where OCL is considered as an option for describing query parts
of transformation rules.

MOIN Core. The MOIN core is the central component in the MOIN archi-
tecture, implementing and enforcing MOF semantics. It is independent from the
deployment options and development infrastructure aspects and calls the other
components for implementing all of MOIN’s functionality.

By managing the object instances, representing model elements, the MOIN
core can also be seen as in-memory cache for model content. However, it also
1 SAP and SAP NetWeaver are trademarks or registered trademarks of SAP AG in Ger-

many and in several other countries.

www.manaraa.com

OCL Support in an Industrial Environment 171

manages the complete life-cycle of objects, triggers events, and uses the reposi-
tory layer to read or write data.

OCL Components. For dealing with OCL expressions, MOIN contains an
OCL parser, OCL evaluator, and an OCL impact analysis component, managed
by the MOIN core.

The impact analysis is essential for the efficient implementation of constraint
checking, as it avoids the unnecessary evaluation of constraints in specific situ-
ations. The impact analysis is described in section 4 in more detail.

3 Related Work

To our knowledge, there is not much related work in the area of optimization of
OCL expression evaluation at the moment. In [5] the authors describe an algorithm
to reduce the set of OCL expressions that have to be evaluated if a model change
occurs. We follow that approach, but had to relax it since we have to deal with any
sort of OCL expression whereas [5] only deals with OCL constraints where further
optimization are possible, based on the assumption that initially all constraints
are valid. However, there are application scenarios in MOIN where this assumption
does not hold at all. E.g., it may be desirable, or at least tolerable to temporarily
leave meta-models in an inconsistent state, like situations where the architect or
designer is not yet able to provide all mandatory information. In a second paper [6],
the same authors describe a method to reduce the number of context instances for
which relevant OCL constraints have to be evaluated as a further optimization on
top of the approach in [5]. The idea of decomposing expressions into sub-expression
andbuilding paths through themodelwas taken fromthere.However, the approach
taken in [6] violates one of our requirements that meta-models should stay intact
avoiding modifications not intended by the user. Furthermore, we had to extend
the algorithm to support all language features of OCL.

In [7], the authors go even one step further, and actively rewrite constraints
for further optimizations. This may even lead to attaching a constraint to a new
context. While this approach may definitely lead to a better performance than
our approach, we did not consider optimizations in that direction, because this
would introduce additional management overhead if we hid that transformation
from the modeller and kept the two versions of constraints in sync.

In [8] a rule-based simplification of OCL constraints is introduced, including,
e.g., constant folding, and removing tautologies. We intentionally abandoned
that approach in our work, again because of the additional overhead introduced.

4 OCL Impact Analysis in the SAP Modeling
Infrastructure

This section presents the architecture and functionality of the OCL impact anal-
ysis and how it fits into SAP’s modeling infrastructure.

www.manaraa.com

172 M. Altenhofen, T. Hettel, and S. Kusterer

4.1 Architecture

To support a wide range of different usage scenarios we decided to implement
the impact analyzer (IA) as a general optimization add-on to applications, which
have to deal with OCL in some way.

Fig. 1. Impact Analyzer Architecture

As indicated in Figure 1, interacting with the IA happens in two phases:
Firstly, in the analysis phase (steps 1-3), a set of parsed OCL expressions is
passed to the IA, whereupon a filter expression is returned. This filter can then
be used to register with the eventing framework, so the application will only
be notified about relevant model change events. Secondly, in the filter phase
(steps 4-6), a received event can be forwarded to the IA to identify the OCL
expressions affected by a change and the set of context instances per expression,
for which the expression has to be evaluated.

In fact, IA does not actually return a set of context instances, but OCL expres-
sions evaluating to that set. This allows for quick responses and leaves further
optimizations to the evaluator. Furthermore, in contrast to [6], this approach
does not rely on an extension of the meta-model.

During the analysis phase, internal data structures are built up, which are then
used in the filter phase for quick look-ups. These data structures are based on
so-called internal events which represent classes of model change events provided
by MOIN’s eventing framework. The relationship between internal events and
model change events is shown in Table 1.

The analysis phase itself is split up into a class scope analysis and a subsequent
(optional) instance scope analysis. Both methods are described in the following
sections.

4.2 Class Scope Analysis

The goal of the class scope analysis is to find the set of internal events (i.e.,
all types of model change events) which affect a given expression, assumming
that all affected expressions have to be evaluated for all its context instances2.
2 Hence the name class scope analysis.

www.manaraa.com

OCL Support in an Industrial Environment 173

Table 1. Mapping between InternalEvents and ModelChangeEvents

Internal Event Model Change Event
CreateInstance(MofClass c) ElementAddedEvent(RefObject o), c being the type

of o
DeleteInstance(MofClass c) ElementRemovedEvent(RefObject), c being the type

of o
AddLink(AssociationEnd e) LinkAddedEvent(Link l), e and l referring to the same

association
RemoveLink(AssociationEnd e) LinkRemovedEvent(Link l), e and l referring to the

same association
UpdateAttribute(Attribute a) AttributeValueEvent(RefObject o, Attribute b), a

and b referring to the same attribute

As outlined in Section 3, we use a generalized approach from [5] and walk the
abstract syntax tree (AST) representing the given OCL expression in a depth-
first manner, tagging each node3 with internal events that are relevant to it:

– Variable expressions referring to self→ CreateInstance(C), where C iden-
tifies the type of self

– C.allInstances() → CreateInstance(C), DeleteInstance(C)
– Association end calls to aE → AddLink(l), RemoveLink(l), where l refers

to the association to which the association end aE belongs
– Attribute call expressions to a → UpdateAttribute(a)

Given a concrete model change event during the filter phase, IA determines the
corresponding internal event and simply looks up the OCL expressions affected
by that event.

context Department i nv maxJun iors :
s e l f . employee−>s e l e c t (e | e . age<23)−> s i z e ()< s e l f . maxJun iors

Listing 1.1. OCL expression [5] for the running example

For the OCL expression in Listing 1.1 4, the Class Scope Analysis returns the
following internal events: CreateInstance(Department), AddLink(employee),
RemoveLink(employee), UpdateAttribute(age), and UpdateAttribute
(maxJuniors).

3 For user-defined attributes and operations, the analyzer recurses into their bodies.
The evaluation of a user-defined attribute or operation changes if its body is affected
by a change to the model, thus affecting the evaluation of any expression referring
to that user-defined operation or attribute.

4 Within a department only a certain number of junior employees are allowed.

www.manaraa.com

174 M. Altenhofen, T. Hettel, and S. Kusterer

4.3 Instance Scope Analysis

The goal of instance scope analysis is to reduce the number of context instances
for which an expression needs to be evaluated. Following the approach in [6],
this is done by identifying navigation paths5. Given an element affected by a
change, the set of relevant context instances can be found by following the reverse
of the navigation paths. Once identified, these reverse paths are turned into
OCL expressions and stored in the internal data structure. By evaluating these
expressions, the set of context instances can be computed from a given changed
element.

The following sections describe in more detail how sub-expressions and sub-
sequently navigation paths can be identified and how they are reversed and
translated into OCL.

Identifying Sub-expressions. The first step is to find sub-expressions. Sub-
expressions start with a variable, or allInstances() and end in a node being
the source of an operation with a primitive return type or in a node being a
parameter of an operation or the body of a loop expression. Sub-expressions can
also contain child sub-expressions in the body of a loop expression.

Two types of sub-expressions can be distinguished: class and instance. Class
sub-expressions start (directly or indirectly) with allInstances() and thus have
to be evaluated for all instances of a class. Instance sub-expressions on the other
hand start (directly or indirectly) with self. In this case, a subset of context
instances can be identified for which the expression has to be evaluated. The
following steps only apply to instance sub-expression.

Example: Given the OCL expression in Listing 1.1, the following sub-expressions
can be identified: self.employee->select(), e.age, and self.maxJuniors.

Identifying Navigation Paths. As per definition, sub-expressions consist only
of navigation operations, but do not necessarily start at the context. To get a
sequence of navigation operations starting at the context, the navigation con-
tained in a child sub-expression has to be concatenated with the navigation of
the parent sub-expression6.

Example: For the example in Listing 1.1 the context-relative navigation paths
are: <employee>, <employee, age> 7, and <maxJuniors>.

For loop expressions with a different return type than their source (e.g. collect,
iterate), the loop body contains vital information which has to be included;
otherwise, the navigation path would contain a gap.
5 I.e. the sequences of attributes and association ends, in an expression starting at the

context. If an object is changed, an OCL expression has to be evaluated for those
context instances from where the changed object can be reached by navigating along
these paths.

6 This approach only works for loop expressions calculating a subset of their source
(e.g. select, reject).

7 As the second sub-expression does not start at the context, its navigation path has to
be concatenated with the navigation path of its parent, i.e., the first sub-expression.

www.manaraa.com

OCL Support in an Industrial Environment 175

Example: Considering the OCL expression in Listing 1.2, the following two nav-
igation paths can be identified: <employer, employee, . . . > (for the parent sub-
expression), and < employer, employee > (for the child sub-expression).

context Employee i nv :
s e l f . employer−>c o l l e c t (d : Department | d . employee) − > . . .

Listing 1.2. An OCL expression including a collect subexpression

In this case, the collect operation takes a set of Departments and returns a
set of Employees. Only by examining the body it can be said how to get from
Department to Employee: by following the employee association end.

Reversing Navigation Paths. For each tagged node in the AST, the way
back to the context (variable) of the expression has to be identified. This is done
by reversing the path from the variable subexpression to the AST node.

Example: Continuing the running example in Listing 1.1, we get the reverse
navigation paths for each relevant internal event identified by class scope analysis
as shown in Table 2.

Table 2. Internal events and corresponding navigation paths

Internal Event Reverse Navigation Path
CreateInstance(Department) <>
AddLink(employee), RemoveLink(employee) <>
UpdateAttribute(age) < employer >
UpdateAttribute(maxJuniors) <>

If a new Department is created, the expression obviously has to be evaluated
for that Department, therefore, the reverse navigation path is empty. If an em-
ployee is added to, or removed from, a department, the reverse navigation path
is empty as well. More interesting is the case when the age of an employee is
changed. In this case, navigating along the employer association end (opposite of
employee) reveals the department, for which the expression has to be evaluated.

Translating into OCL. Reverse navigation paths are translated into OCL
and stored in the internal data structure which relates each internal event with
a number of relevant expressions. For each such pair of internal event and ex-
pression a set of OCL expressions is maintained, which, when evaluated for a
changed model element, results in the set of affected context instances.

For navigating along association ends, translation is straight forward: An as-
sociation call expression is created referring to the opposite association end. Re-
versing object-valued attributes, however, is not that easy. Unfortunately, OCL
does not offer a construct to find the owner of an attribute value. However, a legal

www.manaraa.com

176 M. Altenhofen, T. Hettel, and S. Kusterer

OCL expression can be constructed which finds the attribute value’s owner. The
construct simply iterates through all instances of a type T and checks whether
it’s attribute a points to the given value v: T.allInstances()->select(a=v) 8.

Example: Continuing the running example from Listing 1.1, in case of an Up-
dateAttribute(age) event, the relevant Department instances are computed
from the OCL expression self.employer.

5 Preliminary Results

To show the efficiency of our approach we present empirical results from a test
scenario using the MOF constraints defined in [2] with the UML meta-model as
an instance of MOF.

5.1 UML-meta-model + MOF-constraints

To have a more realistic assessment of the performance benefits achieved by IA,
we used a subset of the MOF-constraints and the UML-meta-model, an instance
of MOF, as a test scenario. We ran the tests with three types of applications: a
naive application (1) that evaluates all constraints on any model change, a class
scope application (2) that only uses the Class Scope Analysis part of the IA, and
an instance scope application (3) that uses the IA to its fullest extend.

Reduction of Expressions. We consider the number of expressions which have
to be evaluated after an event has been reported. In Figure 2 we compare the
results from (2) to those from (1)9. The performance gains are due to the fact
that the CSA does not have to evaluate expressions which cannot have changed
due to the reported event.

For about 1/4 of the events, the number of relevant expressions could be
reduced to one by applying class scope analysis. This is a reduction by 97%. For
about 1/8 of the events, the number of relevant expressions could only be reduced
to 12 and 11 respectively. Still, this is a reduction by 68% (71%). In average, the
number of expressions to evaluate was reduced by 88%, with a Median of 92%.

Reduction of Context Instances. Here we consider the number of evaluator
calls (the evaluation of one expression for one context instance) necessary to
evaluate all affected expressions. The numbers in Figure 3 also include calls
necessary to compute the set of affected context instances. As the number of
expressions to evaluate is reduced in (2), the number of evaluator calls is reduced
as well. Therefore, the number of evaluator calls experiences about the same
reduction as the number of expressions. After an already substantial reduction in
8 For performance reasons, an optimized evaluator could simply replace such a con-

struct by a v.immediateComposite() call on the JMI object to determine the value’s
owner.

9 As instance scope analysis does not further reduce the number of expressions, it is
not included in the chart.

www.manaraa.com

OCL Support in an Industrial Environment 177

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 8 1 9 20 21 22 23 24 25 26 2 7 2 8 2 9 30 31 32 33 34

1
1 0

10
0

Reduction of relevant expressions

Navie

Class

Event

re
le

va
nt

ex
pr

es
sio

ns

Fig. 2. Reduction of relevant expressions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
1

10

100

1000

10000

100000

Reduction of evaluator calls

Naive

Class

Instance

event

ev
al

ua
to

r c
al

ls

Fig. 3. Reduction of evaluator calls (including calls for computing context instances)

(2), (3) achieves another enormous reduction: From several thousands to twenty
or less for about 77% of the events (compare Figure 3). In total, the number of
evaluator calls was reduced by three to four orders of magnitude, which is an
enormous benefit in performance compared to some 26000 calls per event in (1).

6 Conclusion

While efficient support for OCL is considered crucial in large-scale modeling
environments, surprisingly little work has been published on optimizing OCL
expression evaluation in case of arbitrary model changes. In this paper, we have
reported on our experiences with integrating OCL into SAP’s next generation
modeling infrastructure MOIN.

Although some of the basic approaches from literature could be reused [5,6],
the actual implementation had to divert from these methods to cope with the
(non-)functional requirements pertinent to MOIN. Most notably, we currently
refused to implement any techniques that would result in silent or user-invisible
changes to either the meta-models or the related OCL expressions. We know that
this may lead to sub-optimal results in terms of performance, but preliminary

www.manaraa.com

178 M. Altenhofen, T. Hettel, and S. Kusterer

experimental results show that the implemented techniques can still lead to
a significant and hopefully sufficient performance gain. Further optimization
techniques may be considered in the future, but they will have to be evaluated
carefully on their trade-offs regarding other desired features.

Another path of optimization that we have not fully explored yet is the way
how context instances are computed. We plan to investigate how the usage of
the internal MOIN Query Language could speed up this computational step.

Acknowledgements

We would like to thank our colleagues Kristian Domagala, Harald Fuchs, Hans
Hofmann, Simon Helsen, Diego Rapela, Murray Spork, and Axel Uhl for fruit-
ful discussions during the design and the implementation of the OCL Impact
Analyzer.

References

1. Object Management Group: MDA Guide. June 2003.
2. Object Management Group: Meta Object Facility (MOF) Specification. April 2002.

http://www.omg.org/docs/formal/02-04-03.pdf.
3. Object Management Group: OCL 2.0 Specification (ptc/2005-06-06). June 2005.
4. Object Management Group: UML 2.0 Superstructure Specification (pct/03-08-02).

August 2003.
5. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an

Integrity Constraint. In: Proc. 7th Int. Conf. on the Unified Modeling Language
(UML’04), LNCS, 3273 (2004) 173-187

6. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an OCL
constraint. In: Proc. 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’05), LNCS, 3520 (2005) 48-62

7. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: Proc. 17th
Int. Conf. on Advanced Information Systems Engineering (CAiSE’06), June 2006.

8. Giese M., Hähnle R., Larsson, D.: Rule-based simplification of OCL constraints. In:
Workshop on OCL and Model Driven Engineering at UML2004, pages 84-89, 2004.

www.manaraa.com

Report on the 3rd MoDeVa Workshop – Model
Design and Validation

Benôıt Baudry1, David Hearnden2, Nicolas Rapin3, and Jörn Guy Süß2

INRIA, France
University of Queensland, Australia

CEA/LIST, France

Abstract. Software systems are becoming increasingly large and com-
plex, and run the risk of serious failures from unforeseen behaviour.
Model driven development (MDD) is emerging as a solution with strong
potential for dealing with these difficulties using models and model trans-
formations. However, effective validiation and verification techniques are
required to take full advantage of the expected benefits of MDD.

The MoDeVa (Model Design and Validation) series of workshop aims
at bringing together researchers and practitioners to discuss links be-
tween MDD and model-based validation. This document summarizes
the results of MoDeVa’06 that was the third edition of the workshop.
Reviewing the workshop, the organisers feel that a community is form-
ing which aims for practical integration of model-driven development
and V&V and that specific research topics are being identified and ad-
dressed. As an illustration of this, it is important to notice that three
papers this year were dedicated to V&V for model transformations. This
trend may be due to increasing maturity and scale of use of MDD and
thus to a better understanding of hard points and research challenges in
this new approach for software development. There is recognition that
specific solutions in this area are needed.

Workshop Formation

This year’s edition of the MoDeVa series of workshops resulted from a merge
of three separate workshop proposals. In addition to the continuation of the
MoDeVa workshop, there was a proposal more focused on the Model-Driven
Architecture and one other dedicated to model-based testing. 32 participants
attended the workshop, despite competition posed by several other scientific
gatherings with a similar topic (e.g. the MARTES workshop). The workshop
included eight papers organized into three sessions dealing with V&V of models,
V&V of transformations and advances in model-based testing. The session topics
were used to structure the discussions. The workshop included an organised lunch
with ensuing coffee in a bar that gave further opportunity for interaction.

V&V for Models

The session on V&V for models underscored the need to assign a mathematical
semantics to UML, in order to apply traditional V&V methods. Works presented

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 179–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

180 B. Baudry et al.

in this session underlined the need to identify a portion of the UML amenable to
the application of formal semantics. The approaches presented carefully examine
possibilities to manage state space growth, recognising it as the major property
that can limit the adoption of those methods in practice. The ease of use of
these approaches in an industrial context was also discussed. Indeed, adding
formal contracts to models or transforming models to feed them into a model-
checker are techniques that have been available for some years now but are still
not widely adopted. Beyond the challenge of state space explosion, approach
usability, i.e. the skill set required of developers in order to manipulate and
build formal models, was perceived as a major issue.

V&V for Transformations

The session on V&V of transformations showed that the different approaches to
the definition of transformations have significant impact on the preferred style
of V&V. Declarative transformation languages, represented in the session by an
approach based on triple graph grammars, enable the use of theorem provers.
This provides great confidence in the correctness of the solution as crucial prop-
erties of the transformation are implicitly proven correct for all cases. Hence, this
may be a good V&V approach for code generators that build critical code for
embedded systems. However, two issues arise when using this approach. First,
if the prover can not prove the property correct, it does not provide support to
locate the fault in the transformation. Second, the transformation’s specifica-
tion has to be transformed into the target formalism of the prover, which may
be non-trivial. Imperative transformations, exemplified by a business language
transformation framework by IBM research, fare better with an intent-guided
method of test-case generation, that provides clear counter-examples in the case
of errors, but whose coverage is necessarily partial.

Testing

The session on model-based testing showed maturing approaches in this area that
took into account the usability of these approaches by proposing lightweight so-
lutions (based on contracts) for model-based test generation and the integration
in the development process. The exact nature of a test model in the different
approaches arose as a major point of discussion. Even if there seemed to be
agreement on the need for a test model that is different from the design or im-
plementation model, the content of this model or moment of its creation in the
development cycle differed: a test model might be a refinement of the analysis
model, a variant of the design model, or a completely independent model.

Debate

Following the three topic-based sessions, the final part of the workshop was
dedicated to a structured debate on the thesis that: “MDA does not need V&V

www.manaraa.com

Report on the 3rd MoDeVa Workshop – Model Design and Validation 181

or Testing”. Participants were divided into three groups: one to attack the thesis,
one to defend it and a third to judge the quality of the arguments.

An interesting observation in this session was that while participants generally
recognised models as the basis of development, the term MDA appeared to be
weakly delineated. In preparation for the debate, some immediately generalized
MDA to the notion of model-driven development. Those that discussed MDA
found it hard to agree on a common definition.

Evaluation

The workshop’s format called for the presenters of each session to conclude by
forming a common panel for general discussion. Questions on general aspects
of the papers were to be delayed for this panel discussion. The panel discussions
viability depended on the closeness of the subjects treated in the presentations,
however the discussion managed to address general concerns in each domain. The
panel discussions may have been even more constructive with more panel mem-
bers. Both the panel discussions that took place (the Testing panel discussion
was cancelled on the day due to time constraints) only had two panel members,
however we were expecting the Transformation V&V and Testing V&V panels
to have three members. Participants found the final debating exercise interesting
and enjoyable.

The two best papers were awarded based on preferential votes cast by the
participants, and these votes correlated very well with the scores from the paper
reviews. The participant vote had the benefit of being a cheap and transparent
form of measurement from a medium-sized population, however it meant that the
votes were cast on the presentation rather than the paper. An alternative voting
system incorporating the program committee may result in a more objective
selection, however it would necessarily introduce a much greater burden on the
program committee.

Summarily, the MoDeVa workshop has become a point of reference for the
community around MDD and V&V. It is seeing steady growth in the community
and helps to promote verification and testing techniques in the MDD domain
and to ready them for use in large software development. The organisers feel that
the investments into structure and the provision of a high quality environment
has paid of through recognition by the participants.

To carry the workshop forward, a dedicated website at the University of
Queensland has been established as an information point of reference for past
and future MoDeVa editions. A poll of this years participants will be carried out
to seek their opinion on this years edition and on recommendations for improve-
ment. Their input will help to improve proposals for the next issue of MoDeVa,
at MoDELS 2007 in Nashville, Tennessee.

www.manaraa.com

Towards Model-Driven Unit Testing

Gregor Engels1,2, Baris Güldali1, and Marc Lohmann2

1 Software Quality Lab
2 Department of Computer Science

University of Paderborn, Warburgerstr. 100, 33098 Paderborn, Germany
engels@upb.de, bguldali@s-lab.upb.de, mlohmann@upb.de

Abstract. The Model-Driven Architecture (MDA) approach for constructing
software systems advocates a stepwise refinement and transformation process
starting from high-level models to concrete program code. In contrast to numer-
ous research efforts that try to generate executable function code from models, we
propose a novel approach termed model-driven monitoring. On the model level
the behavior of an operation is specified with a pair of UML composite struc-
ture diagrams (visual contract), a visual notation for pre- and post-conditions.
The specified behavior is implemented by a programmer manually. An automatic
translation from our visual contracts to JML assertions allows for monitoring the
hand-coded programs during their execution.

In this paper1 we present how we extend our approach to allow for model-
driven unit testing, where we utilize the generated JML assertions as test oracles.
Further, we present an idea how to generate sufficient test cases from our visual
contracts with the help of model-checking techniques.

Keywords: Design by Contract, visual contracts, test case generation, model
checking.

1 Introduction

Everyone who develops or uses software systems knows about the importance of
software qualities, e.g. correctness and robustness. However, the growing size of appli-
cations and the demand for shorter time-to-market hampers the development of high-
quality software systems. To get a better handle on the complexity, the paradigm of
model-driven development (MDD) has been introduced. In particular, the Object Man-
agement Group (OMG) pushed its Model-Driven Architecture (MDA) [1] initiative
based on the Unified Modeling Language (UML) that provides the foundation for MDA.
However, the MDA is still in its infancy compared to its ambitious goals of having a
(semi-)automatic, tool-supported stepwise refinement process from vague requirements
specifications to a fully-fledged running program. A lot of unresolved questions exist
for modeling tasks as well as for automated model transformations.

1 This paper is an abbreviated version of our same-titled contribution to MoDeV2a 2006. For
related work, refer to the longer version in the MoDeV2a 2006 workshop proceedings or to
our web page at http://www.upb.de/cs/ag-engels.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 182–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Towards Model-Driven Unit Testing 183

Nevertheless, in today’s software development processes models are an established
part for describing the specification of software systems. In principle, models provide
an abstraction from the detailed problems of implementation technologies. They allow
software designers to focus on the conceptual task of modeling static as well as be-
havioral aspects of the envisaged software system. Unfortunately, abstraction naturally
conflicts with the desired automatic code generation from models. To enable the latter,
fairly complete and low-level models are needed. Today, a complete understanding of
the appropriate level of detail and abstraction of models is still missing. Thus, in to-
day’s software development processes developers are normally building an application
manually with respect to its abstract specification with models.

In our work, we introduced a new modeling approach. We do not follow the usual ap-
proach that models should operate as source for an automatic code generation step that
produces the executable function code of the program. Rather, we restrict the modeling
task to providing structural information and minimal requirements towards behavior for
the subsequent implementation. We expect that only structural parts of an implementa-
tion are automatically generated, while the behavior is manually added by a programmer.

As a consequence it can not be guaranteed that the hand-coded implementation is
correct with respect to the modeled requirements. Therefore, we have shown in previ-
ous publications [2,3,4] how models can be used to generate assertions which monitor
the execution of the hand-coded implementation. Herewith, violations of the modeled
requirements will be detected at runtime and reported to the environment. We call this
novel approach model-driven monitoring. It is based on the idea of Design by Contract
(DbC) [5], where so-called contracts are used to specify the desired behavior of an op-
eration. Contracts consist of pre- and post-conditions. Before an operation is executed,
the pre-condition must hold, and in return, after the execution of an operation, the post-
condition must be satisfied.

The DbC approach has been introduced at the level of programming languages. For
instance, the Java Modeling Language (JML) extends Java with DbC concepts [6] which
are annotated to the source code. During the execution of such an annotated Java pro-
gram, the assertions are monitored. An exception is raised as soon as a violation of
the assertions is detected. With the concepts of visual contracts [2] we have lifted the
idea of contracts to the level of models. A visual contract allows for specifying a con-
tract by pairs of UML composite structure diagrams for the pre- and post-conditions. A
transformation of our visual contracts into JML allows for monitoring a system that is
implemented manually.

Now we want to extend our approach to allow for model-driven unit testing. The
visual contracts respectively the generated JML assertions are viewed as test oracles
to decide whether the results calculated by a hand-coded implementation are correct.
Additionally, we want to generate test cases from our models with the help of model-
checking techniques.

2 Overview of the Approach

Test-driven development [7] is an important part of agile processes. E.g. Extreme Pro-
gramming (XP) [8] emphasizes the test-first approach. When handling a programming

www.manaraa.com

184 G. Engels, B. Güldali, and M. Lohmann

task, programmers always begin writing unit tests. This tests formalizes the require-
ments. If all tests run successfully then the coding is complete. To accent the agile part
of our model-driven monitoring approach we want to support the test-driven develop-
ment by enabling model-driven unit testing. Therefore, beside the generation of run-
time assertions we want to automatically generate test cases from our models. Figure 1
shows our development process enabling model-driven monitoring and model-driven
unit testing.

On the design level, a software designer has to specify a model of the system under
development. This model consists of class diagrams and visual contracts. The class
diagrams describe the static aspects of the system. Each visual contract specifies the
behavior of an operation. The behavior of the operation is given in terms of data state
changes by pre- and post-conditions, which are modeled by a pair of UML composite
structure diagrams as explained in Sect. 3.

In the next step, we generate code fragments from the design model. This generation
process consists of two parts. First, we generate Java class skeletons from the design
class diagrams. Second, we generate JML assertions from every visual contract and
annotate each of the corresponding operations with the generated JML contract. The
JML assertions allow us to check the consistency of models with manually derived
code at runtime. The execution of such checks is transparent in that, unless an assertion
is violated, the behavior of the original program remains unchanged.

Then, a programmer uses the generated Java fragments to fill in the missing behav-
ioral code in order to build a complete and functional application. His programming task
will emanate from the design model of the system. Particularly, he will use the visual
contracts as reference for implementing the behavior of operations. He has to code the
method bodies, and may add new operations to existing classes or even completely new
classes, but he is not allowed to change the JML contracts. If new requirements for the
system demand new functionality then the functionality has to be specified with visual
contracts before the programmer can start programming. Using our visual contracts this
way in a software development process resembles agile development approaches.

When a programmer has implemented the behavioral code, he uses the JML com-
piler to build executable binary code. This binary code consists of the programmer’s
behavioral code and additional executable runtime checks which are generated by the
JML compiler from the JML assertions. The manual implementation of a programmer
leads to system state changes. The generated runtime checks monitor the pre- and post-
conditions during the execution of the system.

To further integrate agile approaches in our process we additionally want to integrate
model-driven unit testing in our development process. Therefore, we have to address
the following three problems of model-driven testing [9]:

1. the generation of test cases from models,
2. the generation of a test oracle to determine the expected results of a test,
3. the execution of tests in test environments.

The basic idea of our testing approach is that the specification of an operation by a
pre- and post-conditions (visual contract) can be viewed as a test oracle [10] and run-
time assertion checking can be used as a decision procedure. Thus, our visual contacts

www.manaraa.com

Towards Model-Driven Unit Testing 185

Fig. 1. Overview of the testing approach

can be viewed as test oracles since the JML assertions are generated from our visual
contracts. Still, we need to answer the problem of how to generate test cases from mod-
els. Therefore, we want to combine well-known testing techniques for the generation
of test input parameters and model checking to be able to create concrete system states.
The idea how to create test cases is described in detail in Sect. 5.1.

3 Modeling with Visual Contracts

We show how to specify a system with visual contracts by the example of an online
shop. We distinguish between a static and a functional view. UML class diagrams are
used to represent the static view of a system specification. Figure 2 shows the class
diagram of the sample online shop. We use the stereotypes control and entity
expressing a different role of a class in the implementation. Instances of control classes
encapsulate the control related to a specific use case and coordinate other objects. Entity
classes model long-lived or persistent information. The control class OnlineShop is
connected to the entity classes of the system via qualified associations. A rectangle at
an association end with a qualifier (e.g. productNo) designates an attribute of the
referenced class. The qualifier allows us to get direct access to specific objects.

Class diagrams are complemented by visual contracts that introduce a functional
view integrating static and dynamic aspects. Visual contracts allow us to describe the
effects of an operation on the system state of the system. Thus, for our visual contracts
we take an operation-wise view on the internal behavior.

In the following, we want to explain our visual contracts by two examples. The op-
eration cartCreate of the control class OnlineShop creates a new cart. Figure 3
shows a visual contract that describes the behavior of the operation. The visual contract
is enclosed in a frame, containing a heading and a context area. The keyword vc in

www.manaraa.com

186 G. Engels, B. Güldali, and M. Lohmann

Fig. 2. Class diagram specifying static structure of online shop

Fig. 3. Visual contract for operation cartCreate

the heading refers to the type of diagram, visual contract in this case. The keyword is
followed by the name of the operation that is specified by the visual contract. The oper-
ation name is followed by a parameter-list and a return-result if they are specified in the
class diagram. The parameter-list is an ordered set of variables and the return-result is
also a variable. The variables of the parameter-list and the return-result are used in the
visual contract.

The visual contract is placed in the context area and consists of two UML composite
structure diagrams [11], representing the pre- and the post-condition of an operation.
Each of them is typed over the design class diagram. The semantics of our visual con-
tracts is defined by the loose semantics of open graph transformation systems [12]. The
basic intuition for the interpretation of a visual contract is that every model element,
which is only present on the right-hand side of the contract, is newly created, and every
model element that is present only on the left-hand side of the contract, is being deleted.
Elements that are present on both sides are unaffected by the contract. Additionally, we
may extend the pre- or post-condition of a visual contract by negative pre-conditions
(i.e., negative application conditions [13]) or respectively by negative post-conditions.
A negative condition is represented by a dark rectangle in the frame. If the dark rectan-
gle is on the left of the pre-condition, it specifies object structures that are not allowed
to be present before the operation is executed (see Fig. 4). If the dark rectangle is on
the right of the post-condition, it specifies object structures that are not allowed to be
present after the execution of the operation.

The contract as described in Fig. 3 expresses that the operation cartCreate can
always be executed, because the pre-condition only contains the model element self,
i.e. the object executing the operation. As an effect, the operation creates a new object

www.manaraa.com

Towards Model-Driven Unit Testing 187

Fig. 4. Visual contract for operation cartAdd

of type Cart and a link between the object self and the new object. Additionally, the
object c:Cart is the return value of the operation cartCreate as indicated by the
variable c used in the heading.

Figure 4 shows a more complex contract specifying the operation cartAdd. This
operation adds a new CartItem, which references an existing Product, to an exist-
ing Cart. In contrast to the visual contract of Fig. 3, the variables of the parameter-
list and the return-value are now used to specify values of attributes of the objects.
For a successful execution of the operation, the object self must know two different
objects with the following characteristics: an object of type Cart that has an attribute
cartId with the value cid, and an object of type Product that has an attribute
productNo with the value prNo. The concrete argument values are bound when the
client calls the operation. The same Cart object is reused in the negative pre-condition.
The negative pre-condition extends the pre-condition by the requirement that the Cart
object is not linked to any object of type CartItem that has an attribute productNo
with the value prNo. This means, it is not permitted that the product is already con-
tained in the cart. As a result, the operation creates a new object of type CartItem
with additional links to previously identified objects. The return value of the operation
is the content of the attribute cartItemId of the newly created object.

4 Translation to JML

After describing the modeling of a software system with visual contracts, we now
present how the model-driven software development process continues from the de-
sign model. A transformation of visual contracts to JML constructs provides for model-
driven monitoring of the contracts. The contracts can be automatically evaluated for a
given state of a system, where the state is given by object configurations. The gener-
ation process as well as the kind of code that is generated from a class diagram and
the structure of a JML assertion that is generated from a visual contract are described
in detail in [2,4]. Here we only describe the transformation more generally and from a
methodical perspective.

Each UML class is translated to a corresponding Java class. For attributes and associ-
ations, the corresponding access methods (e.g., get, set) are added. For multi-valued

www.manaraa.com

188 G. Engels, B. Güldali, and M. Lohmann

associations we use classes that implement the Java interface Set. Qualified associa-
tions are provided by classes that implement the Java interface Map. We add methods
like getProduct(int productNo) that use the attributes of the qualified associ-
ations as input parameters. Operation signatures that are specified in the class diagram
are translated to method declarations in the corresponding Java class.

For each operation specified by a visual contract, the transformation of the contract
to JML yields a Java method declaration that is annotated with JML assertions. The pre-
and post-conditions of the generated JML assertions are interpretations of the graphical
pre- and post-conditions of the visual contract. When any of the JML pre- and post-
conditions is evaluated, an optimized breadth-first search is applied to find an occur-
rence of the pattern that is specified by the pre- or post-condition in the current system
state. The search starts from the object self which is executing the specified behavior.
If the JML pre- or post-condition finds a correct pattern, it returns true, otherwise it
returns false.

5 Test Case Generation and Test Execution

In the previous sections we explained how a software designer develops a design model
and how Java class skeletons and JML assertions can be generated from them. We also
explained how a programmer can complete the generated code fragments to build a
complete executable application. After these steps we want to test our application. In
Sect. 2 we explained the three tasks of model-driven testing.

In this section we will explain how we handle the first and the third task, i.e. the
generation of test cases and the execution of a test. The second task (the generation of
a test oracle) is described in Sect. 4 since we can interpret the JML assertions as test
oracles.

Similar to classical unit-testing, our test items are operations. The behavior of an
operation is dependent of the input parameters and the system state. Thus, a test case
has to consider the parameter values of an operation and a concrete system state.

5.1 Test Case Generation

A test case for an operation consists of concrete parameter values and a concrete system
state. We can generate a test case for an operation from our model in three successive
steps. In the following, we explain how to generate a sample test case for the operation
cartAdd (Fig. 4). Figure 5 illustrates the three steps.

In the first step, we generate values for the input parameters of an operation as spec-
ified in the class diagram. In Fig. 5 we generated the parameter values for the oper-
ation cartAdd randomly. For the parameter cid the value “abc” is generated. The
parameter prNo gets the value “def” and the variable num gets the value “1”. Beside
a the random generation of input parameters, we could also use other techniques for
test data generation, e.g. equivalence-class partitioning or boundary value analysis (see
e.g. [14]).

To generate a sufficient system state for testing, we have to execute two further steps.
Since the visual contracts specify system state requirements, we use them as source

www.manaraa.com

Towards Model-Driven Unit Testing 189

Fig. 5. Three steps of test case generation

for generating the system state. Therefore, we initialize the pre-condition of a visual
contract with the parameter values generated in step one. The variables in the parameter-
list are used to restrict the attribute values of objects in the pre-condition as explained in
Sect. 3. Thus, the initialization gives an object structure. In this object structure some of
the attributes have concrete values. Figure 5 shows how the attributes productNo and
cartId of the classes Product and Cart are initialized with the parameter values
of step one according to the pre-condition in Fig. 4. It is important to notice that this
object structure describes a system state only partially.

In the last step of our test case generation, we have to find out how to generate a sys-
tem state which contains the object structure found in step two. Due to the fact that the
object structure in the previous step defines a system state only partially, we cannot just
build a system state by creating the known objects and attribute values. Such a system
state would be incomplete and it would be artificial in a sense that the application would
never create such a system state at runtime. Additional objects or attribute values can be
created during the execution of the systems at runtime and these may have side-effects
on the execution of an operation. Thus, tests should work on realistic system states.

To avoid these artificial system states it would be useful to build a system state by us-
ing the control operations of the system itself. We assume that each operation call leads
to a state change of the system. Thus, we have to find a sequence of operation calls that
starting from the initial system state lead to a sufficient system state which contains this
object structure. As a visual contract describes the system state change of an operation,
we can use these contracts to compute all possible states of the system. Therefore, we
consider a system state as a graph and the visual contracts constitute production rules
of a graph transition system.

Figure 5 illustrates how we want to generate a transition system. Initially the system
state comprises just an instance (self) of the controller class OnlineShop. Exe-
cuting, e.g., the operation cartCreate makes the in Fig. 3 specified changes on the
system state. Thus, a new object of type Cart is generated and linked to the control
object self. Executing further operations brings the system to a state sv which con-
tains the object structure generated in step two. Knowing all visual contracts and an

www.manaraa.com

190 G. Engels, B. Güldali, and M. Lohmann

Fig. 6. Run-time behavior of test execution

initial state, we can compute the graph transition system and search for a production
sequence that creates a system state which contains the object structure found in step
two. These computations can be done automatically with model checking techniques
[15]. The computed production sequence directly refers to an operation sequence which
brings the system state to some desired state containing the object structure computed
in step two. If no sufficient production sequence is found in the graph transition system
(the searched object structure cannot be constructed using the existing operations), our
test case generation approach has to backtrack to step one and generate other test data.

5.2 Test Execution with Embedded Oracles

After test cases are generated, the test execution can start. Test execution comprises two
main steps as shown in Fig. 6. First, the operation sequence determined by the test case
generation must be executed in order to set the system state. Second, the operation under
test is called with the test input parameters also generated by the test case generation.

The embedded assertions lead to a run-time behavior of an operation call as shown in
Fig. 6. When the operation under test is called, a pre-condition check method evaluates
the method’s pre-condition and throws a pre-condition violation exception if it does not
hold. If the pre-condition holds, then the original, manually implemented operation is
invoked. After the execution of the original operation, a post-condition check method
evaluates the post-condition and throws a post-condition violation exception if it does
not hold. If the embedded assertions throw an exception then the implementation does
not behave according to its specification. Thus, we have found an error.

6 Tool Support

Most of the steps of our approach can be supported by tools. In former publications we
have reported on our Visual Contract Workbench, an integrated development environ-

www.manaraa.com

Towards Model-Driven Unit Testing 191

ment for using visual contracts in a software development process [16]. This develop-
ment environment allows software designers to model class diagrams and specify the
behavior of operations by visual contracts. It further supports automatic code generation
as described in Sect. 4.

The most challenging task of our test generation approach is finding an operation
sequence for setting a system state as explained in Sect. 5.1. This task can be automat-
ically solved by model checking tools. A candidate for our purposes is GROOVE [17],
a model checker for attributed graph transition systems. The test execution can be im-
plemented by a test driver as shown in Fig. 6. In the context of JML, we can use the
JMLUnit tool [18] for this purpose.

7 Conclusion

We have developed an approach that lifts the Design by Contract (DbC) idea, which is
usually used at the code level, to the model level. Visual contracts are used as a speci-
fication technique. They are used to specify system state transformations with pre- and
post-conditions which are modeled by UML (composite) structure diagrams. Further,
we presented how to use the visual contracts in a software development process. A
translation of the visual contracts into the Java Modeling Language, a DbC extension
for Java, enables the model-driven monitoring. To support model-driven monitoring,
we provide a visual contract workbench that allows developers to model class diagrams
and visual contracts. Further the workbench supports automated code generation.

In this paper, we have shown how we want to extend our approach with model-
driven unit testing. In our testing approach, a test case consists of parameter values and
a concrete system state. The visual contracts – respectively the generated JML asser-
tions – serve as test oracles to decide whether a manual implementation is correct ac-
cording to its specification. In future work we will concretize our testing approach and
extend our workbench with testing facilities.

References

1. Meservy, T.O., Fenstermacher, K.D.: Transforming software development: An MDA road
map. IEEE Computer 38 (2005) 52–58

2. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In Erwig, M., Schürr,
A., eds.: 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’05). (2005) 63–70

3. Engels, G., Lohmann, M., Sauer, S., Heckel, R.: Model-driven monitoring: An application
of graph transformation for design by contract. In: International Conference on Graph Trans-
formation (ICGT) 2006. (2006) 336–350

4. Heckel, R., Lohmann, M.: Model-driven development of reactive informations systems:
From graph transformation rules to JML contracts. International Journal on Software Tools
for Technology Transfer (STTT) (2006)

5. Meyer, B.: Applying ”Design by Contract”. IEEE Computer 25 (1992) 40–51
6. Leavens, G., Cheon, Y.: Design by Contract with JML (2003)
7. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional (2002)

www.manaraa.com

192 G. Engels, B. Güldali, and M. Lohmann

8. Beck, K.: Extreme Programming Explained. Embrace Change. The XP Series. Addison-
Wesley Professional (1999)

9. Heckel, R., Lohmann, M.: Towards model-driven testing. Electr. Notes Theor. Comput. Sci.
82 (2003)

10. Antoy, S., Hamlet, D.: Automatically checking an implementation against its formal specifi-
cation. IEEE Transactions on Software Engineering 26 (2000) 55–69

11. OMG (Object Management Group): UML 2.0 superstructure specification - revised final
adopted specification (2004)

12. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and coalgebraic
loose semantics for graph transformation systems. APCS (Applied Categorical Structures) 9
(2001) 83–110

13. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions.
Fundamenta Informaticae 26 (1996) 287–313

14. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley (2000)
15. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: A comparison

of two approaches. In: International Conference on Graph Transformation (ICGT) 2004.
(2004) 226–241

16. Lohmann, M., Engels, G., Sauer, S.: Model-driven monitoring: Generating assertions from
visual contracts. In: 21st IEEE/ACM International Conference on Automated Software En-
gineering (ASE) 2006 Demonstration Session. (2006) 355–356

17. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Applications of
Graph Transformations with Industrial Relevance (AGTIVE) 2003. (2003) 479–485

18. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The JML and JUnit
way. In: European Conference on Object-Oriented Programming (ECOOP) 2002. (2002)
231–255

www.manaraa.com

Validation of Model Transformations – First
Experiences Using a White Box Approach

Jochen M. Küster1 and Mohamed Abd-El-Razik2,3,�

1 IBM Zurich Research Laboratory, Säumerstr. 4, 8803 Rüschlikon, Switzerland
jku@zurich.ibm.com

2 IBM Cairo Technology Development Center, El-Ahram, Giza, Egypt
3 Department of Computer Science, American University in Cairo, Egypt

mohrazik@aucegypt.edu

Abstract. Validation of model transformations is important for ensur-
ing their quality. Successful validation must take into account the char-
acteristics of model transformations and develop a suitable fault model
on which test case generation can be based. In this paper, we report our
experiences in validating a number of model transformations and pro-
pose three techniques that can be used for constructing test cases.

Keywords: Model transformations, Testing.

1 Introduction

The success of model-driven engineering generates a strong need for techniques
and methodologies for developing model transformations. How to express model
transformations and build appropriate tool support is a widely discussed re-
search topic and has led to a number of model transformation languages and
tool environments.

For practical use in model-driven engineering, the quality of model transfor-
mations is a key issue. If models are supposed to be semi-automatically derived
using model transformations, then the quality of these models will depend on the
quality of model transformations. Proving correctness of model transformations
formally is difficult and requires formal verification techniques. An alternative
approach widely applied in the industry is validation by testing. Today, it is
common practice to apply large-scale testing for object-oriented programs using
tools such as JUnit.

Model transformations can either be implemented as programs (e.g. in Java)
or using one of the available transformation languages (e.g. [1,2,3]). In both cases,
they require a special treatment within testing. One of the key challenges for
testing model transformations is the construction of ’interesting’ test cases, i.e.
those test cases that show the presence of errors. For black box testing of model
transformations, the meta model of the input language of the transformation
can be used to systematically generate a large set of test cases [4,5]. If the result
� Part of this research was conducted while at the IBM Zurich Research Lab.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 193–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

194 J.M. Küster and M. Abd-El-Razik

of the model transformation is supposed to be executable, a possible testing
approach is to take the output of a model transformation and to test whether
it is executable [6]. By contrast, a white box approach to testing takes into
account design and implementation of the model transformation for constructing
test cases. Compared with the extensive work on model-based testing of reactive
systems (see Utting et al. [7] for a taxonomy and tool overview), testing of model
transformations can still be considered to be in its early stages. A recent overview
of model transformation testing techniques has been published by Baudry et
al. [8]. For a detailed discussion of related work, the reader is referred to the
long version of this paper [9].

In this paper, we present our first experiences with a white box model-based ap-
proach to testing of model transformations. Our techniques have been developed
while implementing a set of five model transformations for business-driven devel-
opment [10,11] which are used in a model-driven engineering approach for busi-
ness process modeling. We propose three techniques for constructing test cases
and show how we have used them to find errors in our model transformations.

The paper is structured as follows: We first introduce the motivation for our
model transformations as well as how we design and implement them in Section 2.
In Section 3, we introduce three techniques for constructing test cases and explain
how we apply them to validate our transformations. We finally discuss several
conclusions drawn from our experience.

2 Model Transformations for Business Process Models

The field of business process modeling has a long standing tradition. Business-
driven development is a methodology for developing IT solutions that directly
satisfy business requirements. The idea includes that business process models
are iteratively refined and transformed using model transformations, to move
semi-automatically from a higher to a lower abstraction level.

We present business process models in the notation of the IBM WebSphere
Business Modeler [12], which is based on UML 2.0 activity diagrams [13]. The
language supported by the WebSphere Business Modeler makes some extensions
to UML and can be considered as a domain-specific language for business process
modeling. In these models, we distinguish task and subprocess elements. While
tasks capture the atomic, not further dividable activities in the business process
models, subprocesses can be further refined into more subprocesses and tasks.
Control and data flow edges connect tasks and subprocesses. The control and
data flow can be split or merged using control actions such as decision, fork,
merge, and join. Process start and end points are depicted by start and end
nodes. In addition, the language also contains a number of specific actions such
as broadcast for broadcasting signals and accept signal for receiving signals or
maps for mapping input data to output data.

In the language supported by the WebSphere Business Modeler, pin sets
(based on parameter sets in UML2) are used for expressing implicit forks and
joins as well as decisions and merges. Although these constructs leave a lot of

www.manaraa.com

Validation of Model Transformations 195

freedom to the developer, they are problematic for complex transformations.
As a consequence, we distinguish between models that only use control actions
and those that only use pin sets. A model in the Control Action Normal Form
(CANF) requires that an action has at most one pin set with exactly one pin in
it [14]. A model in the Pinset Normal Form (PNF) requires that all forks, joins,
decisions and merges are expressed implicitly using pin sets [14].

To support the idea of business-driven development, we have designed and
implemented a number of model transformations for business process models (see
Koehler et al. [11] for a detailed overview). One of these transformations is the
Control Action to Pinset (CAToPinset) transformation [14] which transforms a
business process model into the Pinset Normal Form. Figure 1 shows an example
of a process model in the Control Action Normal Form (upper model) and the
Pinset Normal Form (lower model) and the transformation.

CAToPinset transformation

Input pin:

Output pin:

Pinset:

Task:

Subprocess:

Fig. 1. Example of a process model in both normal forms

For design and implementation of the model transformations, we apply an
iterative approach [15] that consists of producing a high-level design which is
then used as a basis for the implementation. The high-level design of a model
transformation aims at producing a semi-formal description of a transformation,
abstracting from its details such as all possible cases to be supported. The main
objective of this activity is to capture the fundamentals of the transformation
graphically to produce a description that can then be used for discussions among
the developers.

A model transformation within high-level design is specified with a set of
conceptual transformation rules r : L → R, each consisting of a left and right

www.manaraa.com

196 J.M. Küster and M. Abd-El-Razik

side. The left side L and right side R show subsets of the source and target models
for the transformation respectively. Concrete syntax of the underlying modeling
languages is used, depicting how a part of the source model resembling the left
side L is replaced by the part of the model described by R. In addition, those
elements that are considered to be abstract are represented using additional
abstract elements. These elements will typically be refined in later design phases
or during implementation.

Rule r3 (Decision found) Rule r4 (Merge found)

A

B1

Bn

A
B1

Bn

A1

An

B
A1

An

B

A

B1

Bn

A
B1

Bn

Rule r1 (Fork found)

A1

An

B
A1

An

B

Rule r2 (Join found)

..

..

AAbstract node type:
Abstract pinset:

Abstract edge:

Fig. 2. Rules of the Control Action to Pinset transformation

In Figure 2, rules of the CAToPinset transformation are shown. In addition to
concrete syntax elements such as the fork, abstract elements are used, such as an
abstraction for the node type. Overall, the rules abstract from the details such as
the number of pins in a pin set, the number of outgoing or incoming edges, the
type of the nodes and the type of the edge (control or data flow). Nevertheless,
the main idea of each transformation rule is captured. For example, rule r1

removes a fork, creates a new pin within the pin set of A, and connects the
edges outgoing from the fork directly to the pins of A.

In general, different ways of implementing a model transformation exist. A
pure model-driven approach consists of using one of the existing transformation
engines, e.g. supporting the standard QVT [16]. In our case, we decided to im-
plement the transformations directly in Java. This target implementation was
then packaged as an Eclipse plugin and executed in the WebSphere Business
Modeler.

In both cases, the conceptual rules of the transformation have to be refined
by identifying the different cases they have abstracted from and defining how to
handle them. For example, rule r1 in Figure 2 has to be specified in more detail
to take into account the possibility of data flow along the edges, the possibility of

www.manaraa.com

Validation of Model Transformations 197

having multiple edges and special cases where parts of the fork are unconnected.
In addition, the rule has to be refined with regards to the different possible node
types for A and B1 to Bn. In our case, possible node types include start and end
nodes, task, subprocess, loop nodes such as a while loop, all control action nodes,
and a number of specific action nodes such as the broadcast node. It is because
of this number of model elements together with attached constraints that the
transformation requires some effort during implementation as well as thorough
testing.

3 Systematic Testing of Transformations

Along the line of general principles of software engineering [17], we can distin-
guish between testing in the small and in the large. Testing in the small applied
to model transformations can be considered as testing each transformation rule
whereas testing in the large requires testing of each transformation. For both
types of testing, challenges of testing specialized to model transformations can
be expressed as follows (adapted from [18]):

– the generation of test cases from model transformation specifications accord-
ing to a given coverage criterion,

– the generation of test oracles to determine the expected result of a test, and
– the execution of tests in suitable test environments.

In our approach to model transformation development, the third challenge
is easy to overcome because we can execute tests directly in our development
environment. The main challenges are the first and second ones because the
model transformation specification in our case is based on the informal concep-
tual rules introduced above. In the following, we will show how we can partially
overcome these challenges. First, we will discuss common types of errors that
we have encountered when implementing the transformations. Then we discuss
three techniques for test case generation and discuss cases where the test oracle
problem is easy to overcome.

3.1 Fault Model for Model Transformations

A fault model describes the assumptions where errors are likely to be found [19].
Given our approach to model transformation development, we can apply a
model-based testing approach that takes into account the conceptual transfor-
mation rules as models. Based on our experience, the following errors can occur
when coding a conceptual transformation rule:

1. Meta model coverage: the conceptual transformation rule has been coded
without complete coverage of the meta model elements, leading to the prob-
lem that some input models cannot be transformed (e.g. the rule only works
for certain node types, only for control flow edges, or only for one edge
between two tasks but not for two edges).

www.manaraa.com

198 J.M. Küster and M. Abd-El-Razik

2. Creation of syntactically incorrect models: the updating part of the trans-
formation rule has not been implemented correctly. This can lead to models
that do not conform to the meta model or that violate constraints specified
in the meta model of the modeling language.

3. Creation of semantically incorrect models : the transformation rule has been
applied to a source model for which it is not suitable, i.e. the result model
is syntactically correct but it is not a semantically correct transformation of
the source model.

4. Confluence: The transformation produces different outputs on the same
model because the transformation is not confluent. This also includes the
possibility that the transformation leads to intermediate models that cannot
be transformed any further because non-confluence of the transformation
has not been detected and treated.

5. Correctness of transformation semantics : the transformation does not pre-
serve a desired property that has been specified for the transformation. Pos-
sible properties include syntactic and semantic correctness (see above) but
also refinement or behavioral properties such as deadlock freedom.

6. Errors due to incorrect coding: there are also errors possible that cannot be
directly related to one of the other categories. These errors can be classical
coding errors.

Often, there is an interplay between meta model coverage and syntactic cor-
rectness. A meta model coverage error can lead to a syntactically incorrect model.
The challenge in all cases is how to systematically generate test cases and how to
create the appropriate test oracles. Errors due to incorrect coding are indirectly
found when testing for the first four types of errors. In addition, further tech-
niques such as code walk-throughs can be applied. In the following, we introduce
three techniques and discuss how they can be applied to find different types of
errors. The last two types of errors are not explicitly dealt with in this paper
and are left to future work.

3.2 Meta Model Coverage Testing

In our approach to model transformation development, a given conceptual rule
can be transformed into a meta model template. The idea of a meta model tem-
plate is to be able to create automatically template instances that represent
suitable test cases.

In the transition from a conceptual rule to a meta model template, abstract
elements must either be made concrete or must be resolved by parameters to-
gether with a parameter set. To identify for each parameter in the conceptual
rule the possible parameter values, the meta model of the underlying modeling
language must be taken into account.

Figure 3 b) shows a meta model template derived from rule r1 shown in
Figure 3 a). We make concrete the number of available nodes B1, .. ,Bn and
fix it to be n = 2. Further, we also fix the pin set structure of the nodes. The
remaining abstraction of the nodes is parameterized by the possible meta model

www.manaraa.com

Validation of Model Transformations 199

c) Template instances:

b) Template(X,Y,Z):

a) Conceptual rule:

A

B1

Bn

A
B1

Bn

.. ..

X={StartNode, Fork, Join, Decision, Merge, Task, Subprocess,
LoopNode, Broadcast, AcceptSignal}

Y={FinalNode, Fork, Join, Decision, Merge, Task, Subprocess,
LoopNode, Broadcast, AcceptSignal, Map}

Z={FinalNode, Fork, Join, Decision, Merge, Task, Subprocess,
LoopNode, Broadcast, AcceptSignal, Map}

Y

Z
X

Fig. 3. Conceptual rule, meta model template and possible instances

classes. These can be identified when looking at the meta model and must be
captured for each parameter in the meta model template. Figure 3 c) shows two
template instances derived from the template.

Due to the abstraction process, one conceptual transformation rule can give
rise to a number of different meta model templates. Note that when specifying
the parameters for X, Y, Z one has to take into account well-formedness con-
straints of the language.

It is important to realize that meta model coverage testing is a classical case
where white box testing is very powerful. This is because from each rule a number
of templates can be derived that together can ensure a high degree of meta
model coverage (per rule). If we obtain meta model coverage for each rule, we
can deduce meta model coverage for the entire transformation.

After meta model templates have been defined, automatic generation of tem-
plate instances yields a set of test cases for the transformation rule for which the
template has been defined. Both the systematic instantiation of the templates
and the testing can be automated. In the context of our work, a straightforward
generation of templates has been implemented [14] that requires specification of
the template and the suitable parameters. Based on this, a number of test cases
is then generated automatically.

Beyond finding meta model coverage errors, meta model coverage testing can
also be applied to find both syntactic and semantic correctness errors as well as

www.manaraa.com

200 J.M. Küster and M. Abd-El-Razik

errors due to incorrect coding. For syntactic correctness, the test oracle is the
tool environment which in our case can detect whether the transformation result
is syntactically correct. With regards to semantic correctness, each result must
be manually compared and evaluated.

As test cases for meta model coverage are derived directly from a transforma-
tion rule, this technique has its limitations for those cases in which constraints
are formulated for a number of model elements: If these model elements are
not part of a certain rule, no test case generated using meta model coverage
testing will be a suitable test case. This is why in the next section we present
a technique that, given a constraint, aims at construction of test cases for this
particular constraint.

3.3 Using Constraints for Construction of Test Cases

Typically, the meta model of a language also specifies well-formedness
constraints. These constraints can be expressed using the Object Constraint
Language (OCL) or in natural language. Violations of constraints give rise to
syntactic correctness errors. As constraints can be violated by the interplay of
several transformation rules, they cannot be completely detected by meta model
coverage testing.

As a consequence, we believe that existing constraints specified in the lan-
guage specification should be used to construct interesting test cases that aim
at discovering errors due to the violation of constraints. As a transformation
changes model elements, it needs to be tested that all constraints that may be
violated due to the change hold after applying a transformation. We can test
constraints both on the rule and transformation level.

After identification of the changed model elements, we take those constraints
into consideration that are dependent on the model elements changed. A con-
straint is independent of a model element if the existence or value of the model
element instance does not influence the value of the constraint, otherwise it is
dependent.

The idea to construct test cases to ensure constraints after application of the
transformation is then as follows:

– Identify model elements changed by the transformation.
– Identify constraints that are dependent on these model elements.
– For each constraint, construct a test case that checks validity of the con-

straint under the transformation.

The test oracle for these tests is again the execution environment which in
our case checks the constraints after application of the transformation.

An important issue is how we can detect which model elements are changed
by the transformation, in the absence of a complete specification of the trans-
formation rules. Partially, these elements can be detected when regarding the
conceptual rule. At the same time, one can also obtain this information directly
from the programmer.

www.manaraa.com

Validation of Model Transformations 201

With regards to the CAToPinset transformation, the model elements changed
by r1 are the pin set of A, because r1 extends the pin set by adding an additional
pin. Furthermore, edges are affected because r1 changes their source or target
nodes. In a similar way, we can find model elements changed by the other rules.

In our example of business process models, some of the constraints that are
dependent on the changed model elements are:

– C1: A final node has one incoming edge.
– C2: An initial node has one outgoing edge of type control flow.

All constraints are concerned with edges or with pin sets and are thus depen-
dent on the changed model elements.

Given a constraint, we construct a test case for it as follows: Constraints can
be divided into positive constraints requiring the existence of model elements
and negative ones requiring the non-existence of model elements. In both cases,
we try to create test cases that, after the transformation has been applied, can
result into a violation of the constraint.

a) b)

Fig. 4. Test cases for constraints

For example, with regards to constraint C1, which requires that a final node
has one incoming edge, we try to create a test case that after transformation
results in the situation that the final node has two incoming edges. Figure 4 a)
shows such a test case. An incorrect implementation will simply remove the join
node and try to reconnect the incoming edges to the final node, which of course
results into a syntactically incorrect model. Figure 4 b) shows a test case for C2

(removal of the join node can lead to the creation of a String data flow edge
from the start node, if incorrectly coded). All of these test cases have revealed
errors in the implementation of the model transformation CAToPinset.

3.4 Using Rule Pairs for Testing

Another source of errors arises from the interplay of rules: The application of one
rule at some model element in the model might inhibit the application of another
rule at the same model element. The property of confluence requires that the
application of transformation rules on the same or an equivalent model yields
the same result. As stated in [20], confluence of transformations need not always
be ensured. However, it is important to detect whether the overall transformation

www.manaraa.com

202 J.M. Küster and M. Abd-El-Razik

is confluent because this can cause very subtle errors that are difficult to detect
and reproduce. Confluence errors can give rise to syntactic as well as semantic
errors.

In theory, the concept of parallel independence [21] of two rules has been
developed which requires that all possible applications of the two rules do not
inhibit each other i.e. it is always the case that if one rule r1 was applicable before
applying r2 it is also applicable afterwards. If two rules are not parallel indepen-
dent, they might give rise to confluence errors. In [20], we have discussed a set of
criteria for detection of confluence errors which are based on the construction of
critical pairs. The idea of a critical pair is to capture the conflicting transforma-
tion steps in a minimal context and analyze whether a common successor model
can be derived. For exact calculation of critical pairs, a complete specification
of the rules is required, e.g. in one of the model transformation languages.

In testing, the challenge is to construct test cases systematically that lead to
the detection of confluence errors. In our approach, a complete specification of
the transformation rules is not available. However, we can still use the conceptual
rules for construction of test cases: Based on the idea of critical pairs, we argue
that it is useful to construct all possible overlapping models of two rules. These
overlapping models can represent a critical pair and can thus be used to test for
the existence of a confluence error.

The overlapping models can be constructed systematically. The idea is to
take the left sides of two rules and then calculate all possible overlaps of model
elements. Based on an overlap, a model is constructed which joins the two models
at the overlapping model elements. If the overlapping model is syntactically
incorrect, it is discarded. Otherwise, it is taken as a test case.

For example, for rules r1 and r3 in Figure 2 one possible overlap is to identify
the node B1 of r1 with node A of rule r3. The result is shown in Figure 5 a),
assuming n = 2, a task node type for all nodes and a simple edge structure.
Figure 5 b) shows another test case which gave rise to a confluence error because
removing the fork leads to the construction of a pin set with two pins at the
decision, which is forbidden in the language. This leads to an execution error
because in our environment the construction of invalid intermediate models is
not possible. If the fork is removed first, then no invalid model is constructed.
Note that in a different execution environment supporting invalid intermediate
models, the test case would not lead to an execution error.

4 Conclusions

Validation of model transformations is a key issue to ensure their quality and
thereby enables the vision of model-driven engineering become reality. In the con-
text of business-driven development, model transformations are used for trans-
forming more abstract models into more concrete ones and to move between
different representations of models. In this paper, we have reported our first ex-
periences with testing a set of model transformations for business process models
systematically.

www.manaraa.com

Validation of Model Transformations 203

a) b)

Fig. 5. Test cases for confluence

We have proposed three techniques which follow a white box testing approach.
Using this approach, we have been able to significantly improve the quality of
the model transformations under development. Both the meta model coverage
technique as well as the construction of test cases driven by constraints has
shown the existence of a number of errors. Rule pairs have indicated fewer errors,
possibly due to the low number of rules.

There remain further challenges that we have not been able to address yet, for
example, the automation of constructing test cases from OCL constraints. Here
we see two possible improvements, firstly the automatic detection of constraints
that could be violated by providing an algorithm that, given a meta model
element, finds all relevant constraints. Secondly, the automatic conversion of such
a constraint into a possible test case. Future work also includes the elaboration
of tool support in order to fully automate testing of transformations.

Acknowledgements. We thank Ksenia Ryndina, Michael Wahler, Olaf Zim-
mermann and Hoda Hosny for their valuable comments on drafts of this paper.

References

1. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA:
Visual Automated Transformations for Formal Verification and Validation of UML
Models . In: Proceedings 17th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2002), Edinburgh, UK (2002) 267–270

2. Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M., ed.:
Satellite Events at the MoDELS 2005 Conference, Revised Selected Papers. Volume
3844 of LNCS. (2005) 128–138

3. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the Use of Graph Transformation
in the Formal Specification of Model Interpreters. Journal of Universal Computer
Science 9 (2003) 1296–1321

4. Fleurey, F., Steel, J., Baudry, B.: Model-Driven Engineering and Validation: Test-
ing model transformations. In: Proceedings SIVOES-MoDeVa Workshop. (2004)

5. Ehrig, K., Küster, J.M., Taentzer, G., Winkelmann, J.: Generating Instance Models
from Meta Models. Volume 4037 of LNCS, Springer (2006) 156–170

6. Dinh-Trong, T., Kawane, N., Ghosh, S., France, R., Andrews, A.: A Tool-Supported
Approach to Testing UML Design Models. In: Proceedings of ICECCS’05, Shang-
hai, China. (2005)

www.manaraa.com

204 J.M. Küster and M. Abd-El-Razik

7. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing.
Technical report, Department of Computer Science, The University of Waikato
(New Zealand), Technical Report 04/2006 (2006)

8. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Traon, Y.L.: Model Transformation Testing Challenges. In: Proceed-
ings of IMDT workshop in conjunction with ECMDA’06, Bilbao, Spain. (2006)

9. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations - First
Experiences using a White Box Approach. In: Proceedings of 3rd International
Workshop Modeva: Model Development, Validation and Verification. (2006) 62–77

10. Mitra, T.: Business-driven development. IBM developerWorks article, http://
www.ibm.com/developerworks/webservices/library/ws-bdd, IBM (2005)

11. Koehler, J., Hauser, R., Küster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The
Role of Visual Modeleling and Model Transformations in Business-Driven Devel-
opment. In: Proceedings of the 5th International Workshop on Graph Transforma-
tions and Visual Modeling Techniques. (2006) 1–12

12. IBM WebSphere Business Modeler. (http:///www-306.ibm.com/software/
integration/wbimodeler/)

13. Object Management Group (OMG): UML 2.0 Superstructure Final Adopted Spec-
ification. OMG document pts/03-08-02. (2003)

14. Abd-El-Razik, M.: Business Process Normalization using Model Transformation.
Master thesis, The American University in Cairo, in collaboration with IBM (2006)
In preparation.

15. Küster, J.M., Ryndina, K., Hauser, R.: A Systematic Approach to Designing Model
Transformations. Technical report, IBM Research, Research Report RZ 3621 (2005)

16. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation. Final Adopted Specification. OMG document
ad/2005-11-01. (2005)

17. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice-Hall (1991)

18. Heckel, R., Lohmann, M.: Towards Model-Driven Testing. ENTCS 82 (2003)
19. Binder, R.: Testing Object-Oriented Systems: Models, Patterns and Tools. Addison

Wesley (1999)
20. Küster, J.M.: Definition and validation of model transformations. Software and

Systems Modeling Volume 5, Number 3, (2006) 233–259
21. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic

Approaches to Graph Transformation Part I: Basic Concepts and Double Pushout
Approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations. World Scientific (1997) 163–245

www.manaraa.com

Summary of the 2006 Model Size Metrics
Workshop

Frank Weil and Andrij Neczwid

Motorola, Schaumburg, IL 60196, USA
{Frank.Weil,A.Neczwid}@motorola.com

Abstract. A standardized and consistent means of determining the size
of an artifact is fundamental to the ability to collect metrics such as de-
fect density and productivity about the artifact. For example, source
lines of code is often used as the size metric for C code. However, the
concept of lines of code does not readily apply to modeling languages
such as UML and SDL. This report summarizes the presentations and
discussions on this topic from the 2006 Model Size Metrics workshop.

Keywords: Model Size Metrics, Model-Driven Engineering, UML, SDL.

1 Overview

There were two main goals of the Model Size Metrics workshop: Share practical
experience, current work, and research directions related to techniques for cal-
culating the size of a model; and form an industrial and academic consortium
related to model size metrics. A standardized method of determining model size
that allows for the effective baselining and comparison of model concepts is a
crucial need within the MoDELS community. Such metrics enable the effective
estimation and quality management of model-driven development.

As part of the workshop, plans were also discussed on how to fit this work
into a broader umbrella covering model-driven engineering, such as the Re-
MoDD (Repository for Model Driven Development) effort. The goal of the Re-
MoDD project is to create a community resource of model-driven engineering
artifacts that will provide an infrastructure to improve the use of model-based
development.

The attendees of the workshop were practitioners and researchers interested
in the process, estimation, and quality aspects of modeling languages. The work-
shop consisted of individual presentations based on submitted position papers,
followed by open discussions of the presented material as well as plans for future
work.

The position papers presented many complementary views of the concept of
model size and how it can be measured. While some work exists on specific
facets of the topic, the workshop raised more questions than answers—a good
indication that this is a nascent field rich with opportunities for research and
empirical studies.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 205–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

206 F. Weil and A. Neczwid

2 Workshop Presentations

As part of the discussions throughout the workshop, many questions and points
to consider were raised. In order to give more structure to this summary, we
have collected these separately in Section 4.

One point that was generally agreed upon was that the relevance of a given
model element varies depending on what metric its size is being counted for. For
example, a Use Case may have a low direct impact on code size, but it may have
a high impact on cost to fix defects discovered in the code. This implies that a
simple count of number of elements in a model is only part of the equation. In
order to determine size for a given metric, relative weights must be applied to
the counts. Essentially, what constitutes a model of a system has expanded to
include requirements, test cases, design artifacts, etc.

The idea of the size of change, or “delta,” between two versions of a model
was also raised. For line-based languages, one can count additions, deletions,
and changes based on standard “diff” techniques. While these same ideas can
be used for textual portions of models, such as OCL, there are other changes
which are inherent to graphical languages. For example, there are presentational
changes such as moving an element on a diagram, resizing an element, or re-
orienting an element. There are also organizational changes such as moving an
element between diagrams or reorganizing the diagrams within a model, and
more fundamental changes such as renaming an element.

Christian Lange discussed abstraction levels and how they may affect the
metrics, but pointed out that it is not clear how one would measure objectively
the abstraction level of a model or what factors it depends on. An interesting
observation was also made about whether the completeness of the model makes
a difference. Also presented was work on modifying the Fenton and Pfleeger [3]
categorization measures for software as an approach to measuring models. In
particular, the concept of relative size was introduced, which is a ratio of two
absolute sizes and measures how well something is covered.

Harald Störrle discussed the use of metrics for comparison, defect density,
complexity, etc. He presented the concept of having length, width, and breadth
of population measures, from which one could then derive density and strength of
the model. Also discussed was the quantification of the “method of creation” to
describe slots to be filled, and then identifying default values which are deemed
the characteristics of the slots, and whether they are changed or unchanged with
respect to modifying the size of the model. This idea has been applied with some
success to SDL models.

Miroslaw Staron discussed measuring the size of stereotypes, Profiles, and
stereotyped designs in UML based on work with industrial modeling projects and
their stereotype usage. The idea of Profile cohesion was presented, including what
goes into this measure, such as the model library, metamodel, extensions, and
a combination of stereotypes, classes, and data types. In their case studies, size
did not correlate well to defects or quality of Profiles using the framework from
Briand et al. [2] for effective metrics. It was also noted that one cannot compare

www.manaraa.com

Summary of the 2006 Model Size Metrics Workshop 207

a model with one Profile applied against the same model with a different Profile
applied—they are essentially two different models.

Jacqueline McQuillan presented some observations on the application of soft-
ware metrics to UML models. She discussed how to apply metrics to artifacts
at early stages of development, again raising the issue of abstraction level. The
observation was made that metrics can be measured from the viewpoints of the
model and the implementation, and that the differences of measurements them-
selves are metrics. This suggests the approach of defining a metamodel of the
elements to be measured and then measuring the model based on this meta-
model. It is difficult, though, to correlate these metrics with external attributes.

Betty Cheng presented on the initial work on the ReMoDD model repository
project with Robert France. A fruitful discussion ensued, covering how to ad-
minister such a repository, how to make it most useful, what the requirements
for its contents should be, and how groups with conflicting constraints (e.g.,
the proprietary nature of industry models versus the need for open access for
academic research projects) can collaborate.

Jean Bézivin discussed measuring model repositories themselves and brought
up the idea of model “zoos”. This work was done in the context of the Eclipse
Modeling Project. Some work was also presented that defined a “measure” meta-
model.

Horst Kargl discussed measuring the explicitness of modeling concepts in
metamodels, introducing the relationship between metamodel elements and no-
tational elements. It is possible to identify both the hidden concepts in a meta-
model (unused meta-model elements) and the overspecified concepts (those for
which multiple notational elements exist).

Jordi Cabot presented a metric for measuring the complexity of OCL ex-
pressions embedded in a model based on the number of objects involved in the
evaluation of the expression. While in some ways the issue of complexity is sim-
ilar to that of other languages, OCL must be understood in the context of the
model in which it is embedded.

Vieri Del Bianco discussed experience with and a proposal for object-oriented
model size measurement. He presented Function Point Analysis [1] as applied
to models and proposed the translation of a model to some intermediate form
(such as Java) which can then be measured directly.

3 Group Discussions

Following the discussions based on the position papers, an open discussion was
held on what the most pressing questions were and how some progress could be
made on them. The key question selected for detailed discussion was: What are
the types of metrics that can be collected?

Based on the Goal/Question/Metric (GQM) method, it is important to ask
what the goals of model metrics are. It is clear that an overall strategy is needed,
perhaps based around common goals. A high-level and non-exhaustive list of
metrics goals as related to modeling was collected:

www.manaraa.com

208 F. Weil and A. Neczwid

– Project estimation and tracking
• Effort, including what effort is being spent on different parts of the model
• Productivity
• Efficiency

– Quality determination
• Defects
• Defect density
• Defect slip-through

– Method and tool comparison
• Expressiveness
• Scalability
• Verifiability
• Understandability
• Maintainability
• Complexity of description

– Metric dynamics

The appropriateness of “size” for each of these measures was discussed at
length. In particular, the relationship of model size to project tracking was high-
lighted. If there is an estimation of what the final size of a model will be, and one
can measure the size of the partial model during development, one can determine
what percentage has been completed and the growth trend.

This lead to an interesting discussion of what the growth curve should look
like for a “healthy” modeling project. There are three factors that impact model
characteristics (and possibly growth): complexity, quality, and effort. It was ar-
gued that complexity is an important consideration, but in general most people
disagreed, the opinion being that complexity was not necessarily the most im-
portant factor when trying to measure a model. It was pointed out that models
now, as opposed to with previous programming languages, contain so many more
artifacts related to product information. It is not just “code” anymore, which
only captures a representation of the behavior. Even though each of the three
characteristics of a model may be growing at different rates (various diagrams
will grow faster during some stages and slower during other stages), the size of
the entire model should follow a rather linear upward trend overall.

This expectation applies to any “reasonably sized” model, so that an averaging
effect comes into play. There may be dips and plateaus as time progresses, but
a trend line should establish itself. The opinion was that the slope (or shape) of
the trend was what was most important.

An interesting thought was proposed about the visualization of metrics data,
and how the data could be presented to users to help recognize pattern and
trends beyond simple linear ones.

An issue was raised on whether or not it was appropriate to use the size-
measure approach of collecting everything possible and then sorting out the
relevant information at the end. Given that this approach would lead to large
redundancy in the data collected, perhaps one should apply Principal Compo-
nent Analysis to the data to identify multiple correlations.

Overall, it was a very productive set of discussions, with many interesting and
diverse viewpoints being represented.

www.manaraa.com

Summary of the 2006 Model Size Metrics Workshop 209

4 Open Questions

The following is a representative sampling of the questions and issues that were
raised during the workshop. They represent interesting areas for future work.

1. To what extent should language semantics be taken into account? For ex-
ample, is the size of an asterisk state in SDL the same as the size of a simple
state?

2. Sufficiently powerful code generators for any modeling language can produce
code that is approximately equal in object size, so what are the underlying
semantic concepts that allow this to be true? Does “semantic size” matter
in practice? The overall question of how to compute the semantic size is
potentially intractable. Is it good enough to compute an approximation of
the semantic size from the syntactic size?

3. How should UML Profiles be accounted for?
4. What are the units of the size metrics? They need to have some reference to

known units in order to compare to traditional metrics. There is a need to
account for “internal” versus “external” measures. For example, an enormous
baseline of data based on source lines exists, and that cannot be discarded.

5. How does one accurately measure reuse of model elements?
6. How does the size of a model grow over time? What are the typical curves

for healthy and unhealthy projects?
7. Should the way one calculates size change over the life cycle? Should it

change with the development paradigm (agile, waterfall, etc.)?
8. How should delta size be computed? This is often more important for indus-

trial projects than raw size. Does moving a graphical element matter? The
move was presumably done for a reason, and some effort went into it, so it
should count somehow. How does one count a fundamental operation such
as renaming an element? It is really just one change even if it shown up on
several diagrams. Is renaming a class inherently different than renaming a
struct in C?

5 Plans and Summary

Research into and use of model size metrics are of general interest, and that
requires the definitions to be universal and standardized. Not only will this
leverage the efforts of others and provide a large pool of data, but it will help
drive common tool support. A close association with model-repository projects
such as ReMoDD is planned.

To facilitate this collaboration and to continue the discussions, an as-yet-to-
be-named consortium of interested parties is being formed, and a mailing list
will be created. More information is available at the Model-Driven Engineering
TWiki site at http://modeldrivenengineering.org.

One of the tasks of the consortium will be to respond to the Request For
Proposal (RFP) by the Object management Group Architecture-Driven Mod-
ernization (OMG ADM) Task Force for a Software Metrics Metamodel [4]. The

www.manaraa.com

210 F. Weil and A. Neczwid

consortium plans to submit not as a proposal submitter, but instead to present
the recommendations, issues, and questions from this workshop to the commit-
tee selected to review responders to the RFP. This can help provide a means of
evaluating submissions against real-world criteria. This would help ensure that
any accepted proposals at least do not prevent particular directions of work as
viewed by members of this consortium. A longer-term goal related to the OMG
would be to issue a separate RFP if the one from the ADM does not address
specific needs such as how to actually measure the size of models.

For further information, please contact the authors or visit the web site named
above. The full workshop proceedings are also available on that site.

References

1. Albrecht, A.: Measuring Application Development Productivity. In: Proc. Joint
SHARE/GUIDE/IBM Application Development Symp. (1979) 83–92

2. Briand, L., Morasca, S., Basili, V.: Property-Based Software Engineering Measure-
ment. IEEE Trans. on Software Eng., Vol. 22 (1996) 68–87

3. Fenton, N., Pfleeger, S.: Software Metrics, A Rigorous and Practical Approach. 2nd
edn. Thomson Computer Press (1996)

4. Object Management Group: Request For Proposal: Software Metrics Metamodel.
OMG Document: admtf/2006-09-01 (2006)

www.manaraa.com

Model Size Matters

Christian F.J. Lange

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, The Netherlands

C.F.J.Lange@tue.nl

Abstract. Size is an important attribute of software artefacts; for most
artefact types exists a body of measurement knowledge. As software en-
gineering is becoming more and more model-centric, it is surprising that
there exists only little work on model size metrics (MoSMe). In this po-
sition paper we identify the goals justifying the need for MoSMe, such as
prediction, description and progress measurement. Additionally, we iden-
tify challenges that make it difficult to measure the size of UML models
and that MoSMe have to deal with. Finally, we propose a classification
of MoSMe and concrete examples of metrics for the size of UML models.

Keywords: Models, UML, Size, Metrics, Measurement, Prediction,
GQM.

1 Introduction

Measurement is a popular and well-established instrument in software devel-
opment and maintenance. Metrics are used to evaluate, predict, measure and
understand software products, processes, and resources. A large body of mea-
surement knowledge exists for source code. The earliest and still popular metrics
for source code include size metrics. Nowadays software engineering is shifting to
models instead of source code as the central software artefact. Simultaneously,
the measurement activities shift to measure properties of models. Surprisingly,
quality metrics draw a large amount of attention, whereas metrics for the model
size have not been actively addressed. This is surprising, because the notion of
size seems to be much more simple than the notion of quality, and furthermore
size seems to play an important role in the discussion of quality.

The purpose of this position paper is to provide a discussion about model size
metrics (in the remainder of this paper referred to as MoSMe). In particular
we will discuss the need for MoSMe, challenges in defining MoSMe, and we will
propose and evaluate approaches to measure the size of models.

The mostly used language for modeling is the UML [13]. Therefore we limit
the scope of our discussion to MoSMe for UML models, however, we expect most
parts will be generalizable to a broader scope of models with similar character-
istics (e.g. MOF-based models [14]).

This paper is structured as follows: in Section 2 we present the goals of mea-
suring model size, in Section 3 we discuss challenges that have to be dealt with,

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 211–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

212 C.F.J. Lange

in Section 4 we present ideas for approaches and a classification, and in Section 5
we will draw conclusions and discuss opportunities for future work.

2 Why Do We Need Model Size Metrics?

UML models contain a large number of model elements of various types such as
classes, associations, messages, actions, methods, states and so on. For UML mod-
els exist various representations, such as diagrams, XMI representations, or map-
pings to other data models. This huge amount of information of a model allows
to define an even larger amount of different metrics, all measuring some concept
of size. However, to enable selecting metrics, that measure the concept we are in-
terested in from a particular point of view, it is necessary to define the goal of the
measurement. The Goal Question Metric Paradigm by Basili et al. (GQM [2]) pro-
vides a framework to derivemetrics that serve specific goals.According to theGQM
paradigm we define goals for measuring the size of models. These goals are a basis
for the discussion of MoSMe. Here we present possible goals for measuring model
size. As the purpose of this paper is to provoke a discussion about MoSME, the list
is not exhaustive and should be extended to include additional goals.

– Comparing Models. Enabling to compare the size of models, e.g. different
versions of the same model, different models for the same system, models for
different systems

– Measuring Progress. Answering questions like ‘How fast is our model
growing?’.

– Effort Prediction. Predicting for example the effort needed for a project
(note that size is the main driver in the COCOMO model [3]), or the size of
the implementation of the system.

– Quality Evaluation. To measure defect density, it is necessary to measure
size. There is some anecdotal evidence, that size is a predictor for fault-
proneness of software modules, but in literature there is only limited support
for this claim [6].

– Description. Describing the characteristics of a model, e.g. in a repository
such as ReMoDD [4] and in empirical studies it is necessary to describe
carefully characteristics of the model under study [8].

3 What Are the Challenges?

In the discussion of MoSMe we have to deal with a number of challenges inherent
to the UML. In this section we present a non-exhaustive list of challenges for
the definition of MoSMe.

– Multi-View Language. The UML consists of 13 diagram types to describe
systems from multiple views. Each of the diagram types may require specific
MoSMe. Two challenges are related to the multi-view nature of the language:
first, MoSMe have to be robust to overlapping information in diagrams, and

www.manaraa.com

Model Size Matters 213

second, we have to address the challenge, that a model can be large with
respect to a certain diagram type and another model can be large with
respect to a different diagram type.

– Abstraction Level. UML models can describe a system at different ab-
straction levels. This involves that we have to distinguish between the size of
the model and the size of the modeled system. In previous work on a quality
model [10] for UML we described that it is necessary to distinguish between
properties of the model (the description) and the modeled (the described).
Two models that describe the same system at different abstraction levels
will differ in the number of model elements. Usually at a higher abstraction
level fewer model elements are used. It is assumed that the abstraction level
of a model influences its external quality attributes. Verelst [15] showed,
that a higher abstraction level can increase the evolvability of a model. A
possible indication for a model’s level of abstraction is the level of detail ap-
plied to the model (e.g. are methods, attributes, multiplicities,... modeled?).
An additional challenge is that within one single model different levels of
abstraction can exist (by purpose or accidentally).

– Level of Detail. Examples of detailed modeling are the use of explicit
information about multiplicity, about types of attributes, and method pa-
rameters. A higher level of detail leads to an increased number of model
elements. When defining MoSMe, we have to be aware of this and we have
to decide whether the level of details accounts for model size.

– Completeness of Modeling. There are two notions of completeness. The
first notion of model completeness is concerned with how well the require-
ments are addressed by the model. The second notion of completeness is con-
cerned with partial information. It deals with the question whether model
elements have corresponding counterparts in other diagrams (e.g. does an
object in a sequence diagram correspond to a class in the class diagram?).
Empirical investigations have shown [9][11] that in practice models contain
a large amount of completeness issues. Both notions of completeness affect
measuring the model size.

– Scope of Modeling. When modeling a system, there are several possible
choices of the scope of modeling, that affect the size of the model. Examples
are: the model describes only the source code that must be written, or the
model can additionally describe test code, libraries, external components, or
hardware devices.

– Tools. The choice of modeling tool may affect the model size or the size of
its representation.

– Distinction between Model and System. A model is a description of a
system. Several of the above mentioned challenges are related to the distinc-
tion between the size of the model as a description and the system described
by the model. The measurement goal affects which notion of size we are
interested in. Effort prediction for example, requires measuring the size of
the system to be implemented. For describing a model used in an empirical
study about model inspection it might be sufficient to describe the size of
the model as a description of the system.

www.manaraa.com

214 C.F.J. Lange

In future research questions must be formulated to achieve the described goals
using the MoSMe.

4 Possible Approaches

4.1 What Is Model Size?

Size is a property of an entity. In the ‘real-world’ entities are usually physical
objects like humans or cars. Their size is generally captured by the dimensions
height, width and depth. This already indicates that one single size measure is
not sufficient to describe an entity. In the software world, entities are artefacts
like requirements, models and source code (or their elements). Most existing
literature discussing size of software is concerned with source code. Fenton and
Pfleeger [7] define four dimensions of size for source code: length, complexity,
functionality, and reuse.

4.2 Proposed Approaches

We use the four dimensions proposed by Fenton and Pfleeger as a starting point
for categorizing our proposed approaches for MoSMe. We will replace ‘length’
by what we call ‘absolute size’ and we will extend the set of dimensions with
‘relative size’.

Absolute Size. ‘Length’ can be measured of source code, because it is or-
ganized as a sequence of characters and lines. However, UML models are not
sequences and there exists no meaningful notion of length. Therefore we replace
‘length’ by ‘absolut size’. Metrics that measure a model’s absolute size are the
numbers of elements. Example MoSMe are the number of classes, the number of
use cases, the number of sequence diagrams, or the number of classes in a dia-
gram. These examples of MoSMe take the multi-diagram structure of the UML
into account.

Other possible MoSMe would be related to the representation; examples are
the size of the model file or the XMI file of the model. The drawback of these
approaches is that the multi-diagram structure of the UML is not taken into
account and that model representations strongly depend on the modeling tool
and the XMI version.

Relative Size. We introduce the dimension of ‘relative size’ to address the
UML’s multi-diagram structure more accurately and to deal with complete-
ness issues mentioned in Section 3. For this dimension we propose ratios be-
tween absolute size metrics, such as NumberofSequenceDiagrams

NumberofUseCases , NumberofObjects
NumberofClasses ,

or NumberofStateCharts
NumberofClasses . These metrics enable to compare the relative size (or

proportions) of different models with each other and they give an indication
about the completeness of models.

www.manaraa.com

Model Size Matters 215

Complexity. We distinguish complexity of the (describing) model and com-
plexity of the (described) system. We propose to measure the complexity of the
model by a subset of the absolute and relative size metrics. Additionally prop-
erties of the diagrams (such as the Number of Crossing lines) relate to model
complexity. The system complexity should be measured by commonly accepted
complexity metrics such as the metrics suite by Chidamber and Kemerer [5].

Functionality. Established metrics for the functionality are Function Points [1]
and Object Points [3]. We expect that there exist relations between functionality
metrics and MoSMe that enable to assess a model’s completeness (by mapping
function metrics to model elements) or the model’s level of abstraction (by com-
paring function metrics to absolute and relative size metrics).

Reuse. The amount of reuse in a software project affects the required effort
and the amount of new software that must be created. Hence, to fulfill their
goals, MoSMe must take reuse into account. We propose that a measure for
reuse should be included in the collection of MoSMe. A simple metric would be
the percentage of reuse. A reuse metric can only be applied to a UML model
that makes use of a profile to denote reuse (such as OMG‘s Reusable Asset
Specification [12]).

5 Conclusions and Future Directions

In this paper we provide a basis for a discussion about establishing Model Size
Metrics (MoSMe). According to the Goal-Question-Metric paradigm we discuss
goals justifying the need for MoSMe. Additionally we discuss challenges inherent
to the UML that have to be dealt with when developing MoSMe. Based on the
discussion of goals and challenges we propose approaches including some concrete
MoSMe metrics. We conclude that model size cannot be measured with a single
metric, but a set of metrics is required to answer different questions about the
size of a model.

During the discussion at the workshop we would like to extend and refine the
goals, challenges and the MoSMe approaches. Future work should lead to a more
detailed description of these concepts. In particular the proposed MoSMe must
be related to the measurement goals and to the challenges in measuring the size
of UML models. Finally the proposed MoSMe must be validated to ensure that
they measure the desired attribute of the model.

References

1. Allan J. Albrecht. Measuring application development productivity. In Tutorial –
Programming Productivity: Issues for the Eighties, pages 35–44. IEEE Computer
Society, 1986.

2. Victor R. Basili, G. Caldiera, and H. Dieter Rombach. The goal question metric
paradigm. In Encyclopedia of Software Engineering, volume 2, pages 528–532. John
Wiley and Sons, Inc., 1994.

www.manaraa.com

216 C.F.J. Lange

3. Barry W. Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark,
Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost
Estimation with Cocomo II. Prentice Hall, April 2000.

4. Betty Cheng, Robert France, and James Bieman. ReMoDD: A repository for model
driven development.

5. S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

6. Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and fail-
ures in a complex softwaresystem. IEEE Transactions on Software Engineering,
26(8):797–814, August 2000.

7. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous and
Practical Approach. Thomson Computer Press, second edition, 1996.

8. Barbara A. Kitchenham, Shari Lawrence Pfleeger ans Lesley M. Pickard, Peter W.
Jones, Davic C. Hoaglin, Khaled El-Emam, and Jarrett Rosenberg. Preliminary
guidelines for empirical research in software engineering. Technical Report NRC
44158 ERB-1082, National Research Council Canada, 2001.

9. Christian F. J. Lange and Michel R. V. Chaudron. An empirical assessment of
completeness in UML designs. In Proceedings of the 8th International Conference
on Empirical Assessment in Software Engineering (EASE‘04), pages 111–121, May
2004.

10. Christian F. J. Lange and Michel R. V. Chaudron. Managing model quality in
UML-based software development. In Proceedings of 13th IEEE International
Workshop on Software Engineering and Practice (STEP ‘05), 2005.

11. Christian F. J. Lange, Michel R. V. Chaudron, and Johan Muskens. In practice:
UML software architecture and design description. IEEE Software, 23(2):40–46,
March 2006.

12. Object Management Group. Reusable Asset Specification, version 2.2, formal
05-11-02 edition, November 2005.

13. Object Management Group. Unified Modeling Language, UML 2.0 Superstructure
Specification, formal/05-07-04 edition, July 2005.

14. Object Management Group. Meta Object Facility (MOF) Core, v2.0, formal/06-
01-01 edition, January 2006.

15. Jan Verelst. The influence of the level of abstraction on the evolvability of concep-
tual models of information systems. Empirical Software Engineering, 10(4):467–
494, 2005.

www.manaraa.com

On the Application of Software Metrics
to UML Models

Jacqueline A. McQuillan and James F. Power

Department of Computer Science, National University of Ireland, Maynooth,
Co. Kildare, Ireland

{jmcq,jpower}@cs.nuim.ie
http://www.cs.nuim.ie/research/pop/

Abstract. In this position paper we discuss a number of issues relating
to model metrics, with particular emphasis on metrics for UML models.
Our discussion is presented as a series of nine observations where we
examine some of the existing work on applying metrics to UML models,
present some of our own work in this area, and specify some topics for
future research that we regard as important. Furthermore, we identify
three categories of challeges for model metrics and describe how our nine
observations can be partitioned into these categories.

Keywords: software metrics, object-oriented systems, UML,
metamodels.

1 Introduction

Many object-oriented metrics have been proposed specifically for the purpose
of assessing the design of a software system. However, most of the existing ap-
proaches to measuring these metrics involve the analysis of source code. As a
result, it is not always clear how to apply existing metrics at the early stages of
the software development process. With the increasing use of the Unified Mod-
elling Language (UML) to model object-oriented systems at the early stages of
the software development process, research is required to investigate how the
metrics can be measured from UML models and prior to the implementation of
the system.

Being able to measure the metrics accurately from both UML models and
source code is important for several reasons:

– The quality of the system can be assessed in the early stages of the software
life-cycle when it is still cost effective to make changes to the system.

– The implementation can be assessed to determine where it deviates from its
design. This can be achieved by applying metrics to both the UML and source
code and comparing the results. Variations in the metric values may help to
identify parts of the implementation that do not conform to its design.

– Evaluation of the correctness of round trip engineering tools can be per-
formed. Again, applying the same metrics to both the UML and source code

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 217–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

218 J.A. McQuillan and J.F. Power

may help in identifying parts of the system that have been incorrectly for-
ward or reverse engineered.

In this position paper we review some of the existing work on applying metrics
to UML models, present some of our own work in this area, and outline some
topics for future research that we regard as important. However, in order to
serve as a basis for discussion, we have chosen to present this position paper as
a series of nine observations.

2 General Observations

In this section we present three basic observations regarding the nature of metric
definitions and calculation at the model level. The observations themselves are
hardly contentious, but they serve as a framework for discussing related work in
the area.

Observation 1. Defining model metrics is a metamodelling activity.

Many metrics for object-oriented software have been proposed in the literature
[1,2]. However, one of the difficulties with comparing and evaluating these met-
rics is in interpreting and understanding their exact definition. For example,
when counting methods in a class, should constructors, finalisers/destructors
and accessor methods count as ordinary methods? Should methods that are in-
herited but not defined in a class be included? Should abstract methods count as
empty methods, or not at all? In order to answer these questions, it is necessary
to model the entities being measured, and to then define the metrics in terms
of this model. In standard terminology, metrics are defined on the metamodel of
the entities being measured.

Several attempts have been made to address the problem of ambiguous metric
definitions. Briand et al. propose an integrated measurement framework, based
on a model of object-oriented systems, for the definition, evaluation and compar-
ison of object-oriented coupling and cohesion metrics [3,4]. Harmer and Wilkie
have developed an extensible metrics analyser tool for object-oriented program-
ming languages based on a general object-oriented programming language meta-
model in the form of a relational database schema [5]. Reißing defines metrics
over a formal model called ODEM (Object-oriented DEsign Model) which con-
sists of an abstraction layer built upon the UML metamodel [6].

Our own work uses a middle level model to define metrics over Java programs
[7]. By defining metrics on this metamodel i.e. at the meta-level, we were able to
quickly specify and implement a number of different versions of cohesion within
a class, and evaluate the metrics over a number of large software systems.

Observation 2. Implementing metrics that are defined at the meta-level is (al-
most) free.

Using a clearly defined metamodel is important for facilitating unambiguous def-
initions of metrics, but it also has clear advantages in terms of implementation.

www.manaraa.com

On the Application of Software Metrics to UML Models 219

Many metamodelling frameworks facilitate the implementation of correspond-
ing APIs that allow for the representation and traversal of model instances. The
canonical example is the XML Metadata Interchange (XMI) for OMG’s MetaOb-
ject Facility (MOF) [8], but closely related frameworks include the Eclipse Mod-
elling Framework (EMF)1 and the NetBeans Metadata Repository project
(MDR)2.

Previous research has exploited the implementation aspect of metamodels by
defining metrics as queries. El-Wakil et al. propose the use of XQuery as a metric
definition language to extract metric data from XMI design documents, specif-
ically UML designs [9]. Harmer and Wilkie, working from a relational schema,
express metric definitions as SQL queries over this schema [5]. Baroni et al. have
built a library called FLAME (Formal Library for Aiding Metrics Extraction)
that uses the Object Constraint Language (OCL) and the UML metamodel as a
mechanism for defining UML-based metrics [10]. Goulão et al. have utilised this
approach for defining component based metrics and used the UML 2.0 meta-
model as a basis for their definitions [11].

In our own work, we have specified outline metrics on UML class diagrams,
using OCL queries over the UML 2.0 metamodel [12]. The scope of such metrics
is somewhat limited, since many of the features they measure relate to method
internals, which are not available in class diagrams. Nonetheless, a prototype
tool, dMML, was developed as an Eclipse plug-in to implement and measure
these metrics [13].

However, some issues still exist. Assumptions have to be made when speci-
fying how to instantiate the metamodels, such assumptions will have an effect
on the metric definitions. In addition, the process of creating instances of the
metamodels must be verified. Errors or omissions in this process would have a
fundamental impact on the correctness of the calculated metrics.

Observation 3. Defining new metrics is (almost regrettably) easy.

One of the problems with software metrics is that they can be easy to define,
but difficult to justify or correlate with external quality attributes. For example,
Halstead’s metrics [14] are often cited, but almost equally often criticised. Work-
ing at the model level provides a whole new layer of elements and relationships
that can be grouped and counted. However, it is important to avoid the trap of
proposing metrics that count these elements without offering evidence that such
counts are really useful in evaluating the model. Much of the literature on the
proposal of metrics for UML models has concentrated on only one or a small
number of the different diagrams and views available in an overall UML spec-
ification of a software system. Furthermore, the majority of the UML metrics
proposed are primarily simple counting metrics (e.g. number of use-cases in a
model).

One of the earliest sets of metrics proposed for UML models are those de-
scribed by Marchesi who propose metrics that can be applied to class and use
1 http://www.eclipse.org/emf/
2 http://mdr.netbeans.org/

http://www.eclipse.org/emf/
http://mdr.netbeans.org/

www.manaraa.com

220 J.A. McQuillan and J.F. Power

case diagrams [15]. Genero et al. have proposed a set of metrics for assessing the
structural complexity of class diagrams and have performed several experiments
to empirically validate these metrics [16,17]. Various other metrics have been
proposed for class diagrams and a comparison of these metrics can be found in
[18]. Genero et al. have also developed a set of metrics for measuring the size and
structural complexity of state-chart diagrams [19]. Kim and Boldyreff have de-
fined a set of 27 metrics to measure various characteristics of a UML model [20].
However, the metrics are described informally and for some of these measures it
is unclear which UML diagrams should be used to calculate the measures.

There has been relatively little work on measuring existing design metrics
from all of the available views and diagrams of a UML model and there is as yet
no convergence of opinion on the usefulness, or indeed the use, of these model
level metrics.

3 Relationship with Code

The area of software metrics is reasonably well developed, and a discussion of
model level metrics would be incomplete without considering what we can learn
from existing lower level metrics. In particular, the relationship between mod-
els of a software system and the corresponding code can be explored through
evaluation of similar metrics at each level of abstraction.

Observation 4. We can “lift” code metrics to the model level.

One of the most well known suites of object-oriented metrics is the one proposed
by Chidamber and Kemerer (CK) [1]. These metrics were proposed to capture
different aspects of an object-oriented design including complexity, coupling and
cohesion. Several studies have been conducted to validate these metrics and have
shown that they are useful quality indicators [21]. Baroni et al. have formalised
the CK metrics using the OCL and the UML 1.3 metamodel [22]. We have also
formalised the CK metrics using the OCL but have based our definitions on
the UML 2.0 metamodel [12,13]. These definitions specify how to obtain the CK
metrics from class diagrams but do not take any of the other UML diagrams into
consideration. Tang and Chen have also attempted to specify how the CK metrics
can be measured from UML diagrams [23]. They have developed an algorithm for
computing the metrics from UML class, activity and communication diagrams.

The CK metrics suite consists of six metrics: Weighted Methods Per Class
(WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Cou-
pling between Object Classes (CBO), Response For a Class (RFC), and Lack of
Cohesion in Methods (LCOM). Each of the metrics refer to the individual class
in the software system and not to the whole system. Figure 1 reviews each of
these metrics and briefly discusses which UML diagrams need to be examined
in order to gain accurate measures of the metrics.

In addition, it may be possible to obtain further information for the calcula-
tion of these metrics, e.g. method invocations and variable usages of methods
and classes, by inspecting OCL constraints of the system. Interpreting such in-
formation requires further research.

www.manaraa.com

On the Application of Software Metrics to UML Models 221

Weighted methods per class
(WMC): This metric is concerned
with the complexity of the methods
within a given class. It is equal to the
sum of the complexities of each method
defined in a class. If we consider the
complexity of each method to be unity
then the WMC metric for a class is equal
to the number of methods defined within
that class, we refer to this as WMC1.
The WMC1 metric for a class can be
obtained from the class diagrams of a
UML model by identifying the class and
counting the number of methods in that
class. Alternatively, we can consider the
complexity of each method to be Mc-
Cabe’s Cyclomatic complexity [2], which
we refer to as WMCcc. The activity,
sequence and communication diagrams
clearly contain information relevant to
WMCcc, but it is equally plausible that
the state machine diagram could be used
to compute this value for the class as a
whole.
Number of children (NOC): This is
the number of immediate descendants
of a given class, that is the number of
classes which directly inherit from the
class. Again, this metric can be measured
for a class by taking the union of all the
class diagrams in a UML model and ex-
amining the inheritance relationships of
the class.
Response for a class (RFC): This is
a measure of the number of methods that
can potentially be invoked by an object
of a given class. The number of methods
for a class can be obtained from a class
diagram, but the number of methods of
other classes that are invoked by each of
the methods in the class requires informa-
tion about the behaviour of the class. This
information can be derived by inspecting
the various behavioural diagrams, such
as sequence and collaboration in order to
identify method invocations.

Coupling between object classes
(CBO): Two classes are coupled to each
other if a method of one class uses an in-
stance variable or method of the other
class. An estimate for this metric can
be obtained from the class diagrams by
counting all the classes to which the class
has a relationship with and counting all
the reference types of the attributes and
parameters of the methods of the class.
To obtain a more precise value, informa-
tion from the behavioural diagrams can
be taken into account in order to get
information about the usage of instance
variable and invocation of methods. For
example, a sequence diagram gives di-
rect information about the interactions
between methods in different classes.
Depth of inheritance tree (DIT):
This is a measure of the depth of a class
in the inheritance tree. It is equal to the
maximum length from the class to the
root of the inheritance tree. This metric
can be computed for a class by taking the
union of all the class diagrams in a UML
model and traversing the inheritance hi-
erarchy of the class.
Lack of cohesion in methods
(LCOM): Calcuating the LCOM for
a given class involves working out, for
each possible pair of methods, whether
the sets of instance variables accessed
by each method have a non-empty in-
tersection. In order, to compute a value
for this metric, information on the usage
of instance variables by the methods
of a class is required. This information
cannot be obtained from a class diagram.
However, an upper bound for this metric
can be computed using the number of
methods in the class. Diagrams that con-
tain information about variable usages,
e.g. sequence diagrams can be used to
compute this metric.

Fig. 1. An overview of applying the CK metrics to UML models. In this figure we review
the diagrams in a UML model that can contribute to calculating the CK metrics.

www.manaraa.com

222 J.A. McQuillan and J.F. Power

Observation 5. Models can represent partial and/or overlapping information.

In the latest version of UML (2.0), there are 13 different basic diagrams that
can be used to specify a software system. Existing object-oriented metric suites,
such as the CK suite, are mainly relevant to class diagrams, since they measure
structural elements of the design. Source code provides this information in the
same format at the same level of abstraction but UML models can represent
many different kinds of information. For example

– A single class may appear in a number of different class diagrams, with
different degrees of elaboration of its attributes, methods and associations
in each. This information needs to be merged in a consistent way before
metric calculation.

– Some UML diagrams represent a view of a system, rather than a single
overview. For examples, sequence diagrams are typically used to provide
details of a usage scenario. It is not obvious how we should calculate met-
rics across such diagrams, and how we should merge the information from
different diagrams with the same elements.

Defining how to integrate these different sources of information is a significant
issue in model level metrics.

Observation 6. Differences between metric values are themselves metrics.

Ideally, following a Model Driven Architecture (MDA) approach to software
development, the design models and the implementation are synchronised, so
that changes in one are reflected in the other [24]. In practice, UML models can
represent a design stage of a project, used perhaps once to develop a prototype
implementation, and then not updated as the software develops. In this context,
differences between the values of similar metrics measured at the model and
source code level will reflect properties of the evolution of the system, rather
than its design.

Even when models and implementation are synchronised, there will be a dif-
ference between metric values. For example, internal complexity measures for
method bodies may not be available in the model, but can be calculated from
the code. In this context, the model could be used to specify boundary values for
the implementation, or the difference between metric values at the model and
implementation level can capture the level of additional complexity added by the
implementation process. For example, one might expect a prototype implemen-
tation to preserve many of the model level metric values, whereas the ultimate
“real” implementation might introduce significant changes in the metric values.

Identifying differences between the values of the same metric applied to the
same system could also have potential use in reverse engineering. It has already
been noted that a significant level of variation exists between existing tools that
reverse engineer class diagrams [25]. Software metrics, measured at the model
level and then compared, can be used to evaluate the correctness of reverse
engineering tools, or to quantify their perspective on the abstraction of high-
level concepts, such as aggregation and composition, from the source code.

www.manaraa.com

On the Application of Software Metrics to UML Models 223

4 Some Future Directions

In this section we outline some directions for future research in the area of model
level metrics that we regard as important.

Observation 7. Metric definitions should be re-usable.

Standard concepts measured by metrics, such as DIT or NOC, apply equally
to models and code. Ideally, it should be possible to define these concepts once,
and then adapt them to each relevant metamodel in turn. This provides not only
for economy of expression, but also assurance that the same concepts are being
measured at each level. However, this is not as easy as it may appear. Even a
relatively simple metric, such as DIT, involves traversing relationships that may
be represented quite differently in different models.

The simplest approach might be to define a single model over which the
metrics are defined, and then apply transformations to map other models into
this canonical model. However, given the range of UML diagrams, and possible
contributions from language metamodels, a single canonical model may not be
realistic. Instead, we may need to examine the possibility of mapping the metric
definitions across different models.

Observation 8. The relationship between behavioural models and coverage
needs to be explored.

A number of the UML diagrams represent behavioural aspects of a system, for
example, use case, sequence and communication diagrams. Calculating metrics
for such diagrams involves measuring a particular usage of the system, rather
than its design as a whole. We have previously mentioned the difficulty of merg-
ing such partial information, but there are also unexplored issues regarding how
such information should be interpreted.

Previous work, including our own, has explored some of the issues relating to
defining and evaluating metrics at run-time [26,27]. Such metrics can be shown to
capture additional information about the program but are, of course, dependent
on the context in which the program is run. Indeed it is arguable that metrics
at this level represent coverage data, rather than metrics in the usual sense. The
use of such information, or its integration into testing strategies, is still relatively
undeveloped.

Observation 9. Standardisation is multi-faceted; interoperability is the key.

One of the benefits of metamodelling is that interoperability between models is
facilitated; metamodel Zoos 3 represent an important contribution here. How-
ever, there are other aspects that can contribute to comparing and evaluating
metric results; some of these include:

– Benchmark suites
The importance of benchmarks in software engineering in general, and in
evaluating fact extractors in particular, has been noted by Sim et al. [28].

3 For example, http://www.eclipse.org/gmt/am3/zoos/

http://www.eclipse.org/gmt/am3/zoos/

www.manaraa.com

224 J.A. McQuillan and J.F. Power

They note the importance of benchmark suites, such as the SPEC suite, in
other areas of computer science, and argue for a similar approach to software
engineering research. Similarly, a call for benchmarks for software visualisa-
tion was issued in 2003 [29], but it is not clear what level of acceptance this
has gained. The selection of a number of common programs and models for
use in metric studies would greatly facilitate comparison between metrics
and evaluation of new metrics.

– Data sets
An interesting recent development towards standardisation and repeatabil-
ity of results is the Promise Software Engineering Repository [30]. This is
a collection of publicly available datasets “created to encourage repeatable,
verifiable, refutable, and/or improvable predictive models of software engi-
neering”. At the moment the repository is still in the early stages of de-
velopment and contains relatively specialised data sets, but it represents a
promising trend in software engineering research.

– Non-code artifacts
One of the difficulties in evaluating metrics at the UML level is the relatively
small supply of UML and other design level artifacts. Open source software
provides a rich source of information at the code level; it would be highly de-
sirable if design level documents could be made available in a similar fashion.
One initiative is the Repository for Model Driven Development (ReMoDD)
project [31]. The objective of this project is to develop a repository of ar-
tifacts for use by researchers and industry practioners in the area of Model
Driven Engineering of software systems. Also as an approximation, UML
diagrams can be reverse engineered from code, and the reverse engineer-
ing community has already provided for interoperability through formalisms
such as GXL [32] and our own g4re artifact repository [33]. However, reverse
engineering artifacts are fundamentally different from design artifacts, and
can at best only serve as an approximation for the real thing.

5 Summary

In this position paper we have discussed a number of issues relating to model
metrics, with particular emphasis on metrics for UML models. We have struc-
tured our discussion around nine observations, which we can also partition into
three levels of challenges for model metrics:

– The technical challenge of defining, comparing and reusing metrics over dif-
ferent descriptions of the same software system (Observations 1, 6, 7)

– The conceptual challenge of defining how to measure metrics from partial
descriptions of models, and of the change in metrics between different rep-
resentations of the software (Observations 3, 5, 8)

– The practical challenge of gathering, comparing and interpreting new and
existing metrics (Observations 2, 4, 9)

Our own work in this area, as cited above, is concentrated on addressing the
technical challenges of defining reusable metrics at the meta-level.

www.manaraa.com

On the Application of Software Metrics to UML Models 225

References

1. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6) (1994) 476–493

2. Fenton, N., Lawrence Pfleeger, S.: Software Metrics: A Rigorous and Practical
Approach. International Thompson Computer Press (1996)

3. Briand, L., Daly, J., Wuest, J.: A unified framework for coupling measurement in
object-oriented systems. IEEE Transactions on Software Engineering 25(1) (1999)
91–121

4. Briand, L., Daly, J., Wuest, J.: A unified framework for cohesion measurement in
object-oriented systems. Empirical Software Engineering 3(1) (1998) 65–117

5. Wilkie, F., Harmer, T.: Tool support for measuring complexity in heterogeneous
object-oriented software. In: IEEE International Conference on Software Mainte-
nance, Montréal, Canada (October 3-6 2002)

6. Reißing, R.: Towards a model for object-oriented design measurement. In: ECOOP
Workshop on Quantative Approaches in Object-Oriented Software Engineering,
Budapest, Hungary (June 18-19 2001)

7. McQuillan, J., Power, J.: Experiences of using the Dagstuhl Middle Metamodel for
defining software metrics. In: Proceedings of International Conference on Principles
and Practices of Programming in Java, Manheim, Germany (August 30 - September
1 2006) 194–198

8. The Object Management Group: UML 2.0 draft superstructure specification (2003)
9. El-Wakil, M., El-Bastawisi, A., Riad, M., Fahmy, A.: A novel approach to for-

malize object-oriented design metrics. In: Evaluation and Assessment in Software
Engineering, Keele, UK (April 11-12 2005)

10. Baroni, A., Brito e Abreu, F.: A formal library for aiding metrics extraction.
In: ECOOP Workshop on Object-Oriented Re-Engineering, Darmstadt, Germany
(July 21 2003)

11. Goulão, M., Brito e Abreu, F.: Formalizing metrics for COTS. In: ICSE Workshop
on Models and Processes for the Evaluation of COTS Components, Edinburgh,
Scotland (May 25 2004)

12. McQuillan, J., Power, J.: A definition of the Chidamber and Kemerer metrics
suite for the Unified Modeling Language. Technical Report NUIM-CS-TR-2006-
03, Dept. of Computer Science, NUI Maynooth, Co. Kildare, Ireland (October
2006)

13. McQuillan, J., Power, J.: Towards re-usable metric definitions at the meta-level.
In: PhD Workshop of the 20th European Conference on Object-Oriented Program-
ming, Nantes, France (July 4 2006)

14. Halstead, M.: Elements of Software Science. First edn. Elsevier, North Holland
(1977)

15. Marchesi, M.: OOA metrics for the Unified Modeling Language. In: Second Eu-
romicro Conference on Software Maintenance and Reengineering, Florence, Italy
(March 8-11 1998)

16. Genero, M., Piattini, M., Calero, C.: Early measures for UML class diagrams.
L’Object 6(4) (2000) 489–515

17. Genero, M., Jimnez, L., Piattini, M.: A controlled experiment for validating class
diagram structural complexity metrics. In: International Conference on Object-
Oriented Information Systems, Montpellier, France (September 2-5 2002)

18. Yi, T., Wu, F., Gan, C.: A comparison of metrics for UML class diagrams. ACM
SIGSOFT Software Engineering Notes 29(5) (2005) 1–6

www.manaraa.com

226 J.A. McQuillan and J.F. Power

19. Genero, M., Miranda, D., Piattini, M.: Defining and validating metrics for UML
statechart diagrams. In: 6th ECOOP Workshop on Quantitative Approaches in
Object-oriented engineering, Malaga, Spain (June 11 2002)

20. Kim, H., Boldyreff, C.: Developing software metrics applicaple to UML models.
In: 6th ECOOP Workshop on Quantitative Approaches in Object-oriented engi-
neering, Malaga, Spain (June 11 2002)

21. Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics
as quality indicators. IEEE Transactions on Software Engineering 22(10) (1996)
751–761,

22. Baroni, A., Brito e Abreu, F.: An OCL-based formalization of the MOOSE metric
suite. In: Proceedings of ECOOP Workshop on Quantative Approaches in Object-
Oriented Software Engineering, Darmstadt, Germany (July 22 2003)

23. Tang, M.H., Chen, M.H.: Measuring OO design metrics from UML. In: Interna-
tional Conference on The Unified Modeling Language, Dresden, Germany (Septem-
ber 30 - October 4 2002)

24. Warmer, J., Kleppe, A.: The Object Constraint Language. Addison-Wesley (2003)
25. Guéhéneuc, Y., Albin-Amiot, H.: Recovering binary class relationships: putting

icing on the UML cake. In: Object Oriented Programming Systems Languages
and Applications, Vancouver, BC, Canada (October 24-28 2004) 301–314

26. Arisholm, E., Briand, L., Foyen, A.: Dynamic coupling measures for object-oriented
software. IEEE Transactions on Software Engineering 30(8) (2004) 491–506

27. Mitchell, A., Power, J.: A study of the influence of coverage on the relationship
between static and dynamic coupling metrics. Science of Computer Programming
59(1-2) (January 2006) 4–25

28. Sim, S., Easterbrook, S., Holt, R.: Using benchmarking to advance research: A
challenge to software engineering. In: International Conference on Software Engi-
neering, Portland, Oregon, USA (May 3-10 2003) 74–83

29. Maletic, J., Marcus, A.: CFB: A call for benchmarks - for software visualization.
In: 2nd IEEE Workshop of Visualizing Software for Understanding and Analysis,
Amsterdam, The Netherlands (September 22 2003) 108–113

30. Shirabad, J.S., Menzies, T.J.: The PROMISE Repository of Software Engineer-
ing Databases. School of Information Technology and Engineering, University of
Ottawa, Canada (2005)

31. Cheng, B., France, R., Bieman, J.: ReMoDD: A repository for model driven de-
velopment

32. Holt, R., Schrr, A., Sim, S., Winter, A.: GXL: A graph-based standard exchange
format for reengineering. Science of Computer Programming 60(2) (2006) 149–170

33. Kraft, N., Malloy, B., Power, J.: Toward an infrastructure to support interoper-
ability in reverse engineering. In: Working Conference on Reverse Engineering,
Pittsburgh, PA (November 8-11 2005) 196–205

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 227 – 231, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Summary of the Workshop Models@run.time at
MoDELS 2006

Nelly Bencomo1, Gordon Blair1, and Robert France1,2

1 Lancaster University, Comp. Dep., InfoLab21,
Lancaster, UK, LA1 4WA,

Computer Science Department, Colorado State University
Fort Collins, CO, USA, 80523-1873

{nelly,gordon}@comp.lancs.ac.uk, france@cs.colostate.edu

Abstract. The first edition of the workshop Models@run.time was co-located
with the ACM/IEEE 9th International Conference on Model Driven
Engineering Languages and Systems (formerly the UML series of conferences).
The workshop took place in the antique city of Genoa, Italy, on the 1st of
October, 2006. The workshop was organised by Gordon Blair, Robert France,
and Nelly Bencomo. This summary gives an overview an account of the
presentations and lively discussions that took place during the workshop.

Keywords: model-driven engineering, reflection, run-time systems.

1 Introduction

We are witnessing the emergence of new classes of application that are highly
complex, inevitably distributed, and operate in heterogeneous and rapidly changing
environments. Examples of such applications include those from pervasive and Grid
computing domains. These systems are required to be adaptable, flexible,
reconfigurable and, increasingly, self-managing. Such characteristics make systems
more prone to failure when executing and thus the development and study of
appropriate mechanisms for run-time validation and monitoring is needed.

In the model-driven software development area, research effort has focused
primarily on using models at design, implementation, and deployment stages of
development. This work has been highly productive with several techniques now
entering the commercialisation phase. The use of model-driven techniques for
validating and monitoring run-time behaviour can also yield significant benefits. A
key benefit is that models can be used to provide a richer semantic base for run-time
decision-making related to system adaptation and other run-time concerns. For
example, one can use models to help determine when a system should move from a
consistent architecture to another consistent architecture. Model-based monitoring
and management of executing systems can play a significant role as we move
towards implementing the key self-* properties associated with autonomic
computing.

www.manaraa.com

228 N. Bencomo, G. Blair, and R. France

Goal
The goal of this workshop was to look at issues related to developing appropriate
model-driven approaches to managing and monitoring the execution and operation of
systems. This is the first MoDELS workshop to address this theme. The workshop
brought together researchers from a variety of communities including researchers
working on model-driven software engineering, software architectures, computational
reflection, and autonomic and self healing systems. At least twenty-seven people
attended from Austria, Brazil, France, Germany, Italy, Norway, the UK and the US.

The call for papers invited submissions on a number of focus topics including:
Relevance and suitability of different model-driven approaches to monitoring and
managing systems during run-time, Compatibility (or tension) between different
model-driven approaches, Forms of run-time models, Relation with other phases of
the software engineering lifecycle, Maintainability and validation of models, and The
role of reflection in maintaining the causal connection between models and run-time
systems.

In response to the call for papers, nine (9) papers were submitted, of which five (5)
papers were accepted for long presentation and two (2) papers for short presentation.
Each submitted paper was reviewed by 3 program committee members. After lengthy
discussions two papers were chosen as the best papers; the decision took into account
the quality of the papers and the relevance of the papers to the goals of the workshop.
These papers were extended and improved. The extended versions of these two papers
are published in this proceeding.

2 Workshop Format

The workshop was designed to facilitate focused discussion on the use of models
during run time. It was structured into presentation and work (discussion) sessions.
During the morning the guest speaker Prof. Betty Cheng from Michigan State
University gave the talk “Modeling and Analyzing Dynamically Adaptive Software”.
This presentation was based on the article “Model-Based Development of
Dynamically Adaptive Software” that received an ACM SIGSOFT Distinguished
Paper Award in ICSE'06, [1]. Betty presented an approach to creating formal models
of adaptive software behaviour. The approach separates the adaptation behaviour and
non-adaptive behaviour specifications of adaptive programs, making the models
easier to specify and more amenable to automated analysis and visual inspection.
Betty presented a process to construct adaptation models, automatically generate
adaptive programs from the models, and verify and validate the models. The content
of her talk was strongly relevant to the workshop and provided a good kick off and
inspiration for lively discussion during the rest of the day.

After Betty’s talk, the paper sessions followed. There were two types of
presentations, full presentations and short presentations. To ensure effectiveness of
the format full presentations were limited to 10 minutes and short presentations were
limited to 5 minutes. Both kinds of presentations were followed by 5 minutes of
discussion and questions. Furthermore, to facilitate an informed and fruitful
discussion, the full presentations were followed by presentations of paper analyses by
assigned independent readers. Each independent reader was someone other than a

www.manaraa.com

 Summary of the Workshop Models@run.time at MoDELS 2006 229

paper author assigned to discuss the extent to which the paper had addressed the
research questions posed in the Call for Papers. After the presentations of the
accepted papers, invited speaker Veronique Normand from Thales Research and
Technology gave a presentation about the project MODELPLEX.

The afternoon was dedicated to focused discussions on research challenges.
Gordon Blair, who was a patient and watchful observer during the morning, took note
of the raised questions and comments. Based on his comments and observations, he
gave final remarks to shape the discussions of the rest of the afternoon.

The workshop was closed by a general discussion, including an evaluation of the
event itself by the participants. Details of the various sessions and other events are
provided in Sections 3 and 4 below. The proposed format worked very well, with all
attendees contributing to the workshop through full, open, constructive and friendly
discussion.

3 Session Summaries

Nelly Bencomo welcomed the participants and explained the motivation and format
of the workshop.

Session 1
The session chair of the session was Robert France who introduced and chaired the
discussions of the presentation of the papers:

"Experiments in Run-Time Model Extraction", presented by Jean Bézivin.
“Applying OMG D&C Specification and ECA Rules for Autonomous Distributed

Component-based Systems", presented by Jérémy Dubus. Fabio Costa was the second
reader.

"Models at Run-time for sustaining User Interface Plasticity", presented by Jean-
Sébastien Sottet. Arnor Solberg was the second reader.

Session 2
After the coffee break, the second session started. The chair of the session was Nelly
Bencomo, who introduced and managed the discussions about the papers:

“A Run-time Model for Multi-Dimensional Separation of Concerns", presented by
Ruzanna Chitchyan. Jon Oldevik was the second reader.

"Towards a More Effective Coupling of Reflection and Run-time Metamodels for
Middleware", presented by Fabio Costa. Jean-Marc Jezequel was the second reader.

"Model-driven development of self-managing software", presented by Marko
Boskovic. Steffen Zschaler was the second reader.

After lunch an invited presentation on the MODELPLEX project was given by

Veronique Normand. Several related topics were covered by her presentation. During
her talk she discussed how important it is that humans are treated as key parts when
making decisions and when defining models. In addition, several perspectives have to
be handled, for example design-time system configuration and operation time system

www.manaraa.com

230 N. Bencomo, G. Blair, and R. France

reconfiguration or design-time vs. operation time verification. This last statement was
repeated by other presenters during the workshop.

Gordon Blair then provided a summary of the morning. He started off by
commenting that we had seen an interesting jigsaw of pieces and it was up to us to put
all the pieces together in the afternoon. He followed this by stating that this problem
area is probably impossible to solve in the general case and most of the successful
work we heard about in the morning narrowed the problem either by focusing on a
given application domain and/or by focusing on a particular design methodology (e.g.
components, AOSD). He also commented that when addressing the problems it is
important to appreciate the reality of distributed systems and solutions must be
scalable, must perform well, and must be extensible.

He then highlighted the important role of the software engineering process in
identifying complete methodologies for adaptive and autonomic systems (see for
example the invited talk by Betty Cheng). It is the premise of the workshop that
models have a role throughout such a methodology from early requirements through
to run-time.

He commented that many of the contributions in the morning concerned models for
run-time, i.e. examples of models that had a role to play during the run-time of the
system, whereas what we really need is to step forward and have models at run-time,
i.e. models that are an intrinsic part of the systems architecture. This requires a clear
understanding of appropriate models, of the running system and of the relationship
between them. This leads to the inevitable conclusion that we are concerned with
reflection, where the models represent a causally connected self-representation of the
system at run-time.

The summary concluded by highlighting some key questions to shape the rest of
the discussions:

1. What should a run-time model look like?
2. How can the models be maintained at run-time?
3. What is their role in system validation?
4. What are the best overall model-driven approaches for adaptive and

autonomous systems?
In addition, it is important to reflect on the following key meta-level questions:
1. What do we know (useful building blocks)?
2. What do we not know (towards a roadmap)?
3. …. And of course, what should we do next!

4 Discussions

The rest of the afternoon saw the group divided in two discussion subgroups. Both
groups shared the same interests and discussed the same set of questions. Summary
reports were produced by the leader discussant of each breakout session (Ruzanna
Chitchyan and Steffen Zschaler). As the two breakout groups reassembled to
summarize their work it was interesting to see how different groups reached very
similar conclusions.

When defining what a run-time model looks like both groups coincide in saying
that it is related with reflection as it is necessary to have a self representation of the

www.manaraa.com

 Summary of the Workshop Models@run.time at MoDELS 2006 231

system in operation. A run-time model is no different from any other model where a
model is defined as a simpler representation of “reality” that serves a given purpose.
The model in this case should be an ongoing representation of the system that is
running. There should be a causal connection between the run-time model and the
system on execution. The defined model will depend on the problem that is being
tackled. Run-time models can offer support to simplify decision making and
manipulation, can drive the execution of the application or simply can support for
debugging, validation, monitoring, and maintainability.

Each of the questions posed by Gordon cannot be answered without more research.
There is need to promote research that explores diverse ways of adapting software
during run-time. Furthermore, presentations and discussions make us consider that
model-driven approaches offer valuable potential to support run-time adaptability.
Model-driven software development would help providing the infrastructure to
reconfigure and adapt a run-time system based on input QoS and context based
values. The perspective of models at run-time consists in bringing this model-based
capability forward to the run-time.

In the end, the workshop itself was evaluated. The organizers asked the participants
to provide feedback about the workshop and attendants declared to be very satisfied
with the presentations and discussions. It was concluded that the research community
should be encouraged to study the issues raised during this workshop.

Acknowledgments. We would also like to thank the members of the program
committee who acted as anonymous reviewers and provided valuable feedback to the
authors: Jan Aagedal, Walter Cazzola, Wolfgang Emmerich, Gang Huang, Jean-Marc
Jezequel, Rui Silva Moreira, Marten van Sinderen, Arnor Solberg, and Thaís
Vasconcelos Batista. Last but not least, the authors of all submitted papers are
thanked for helping us making this workshop possible.

Reference

1. J. Zhang and B. H. C. Cheng:Model-Based Development of Dynamically Adaptive
Software. in International Conference on Software Engineering (ICSE'06), (China, 2006).

www.manaraa.com

Using Runtime Models to Unify and Structure
the Handling of Meta-information in Reflective

Middleware�

Fábio Moreira Costa, Lucas Luiz Provensi, and Frederico Forzani Vaz

Institute of Computing, Federal University of Goiás
Campus Samambaia, UFG, 74690-815, Goiânia-GO, Brazil

{fmc,lucas,frederico}@inf.ufg.br
http://www.inf.ufg.br/∼fmc

Abstract. Reflection plays an important role in the flexibilisation of
middleware platforms. Through dynamic inspection, middleware inter-
faces can be discovered and invoked at runtime, and through adaptation
the structure and behaviour of the platform can be modified on-the-
fly to meet new user or environment demands. Metamodeling, on the
other hand, has shown its value for the static configuration of middle-
ware and other types of system as well. Both techniques have in common
the pervasive use of meta-information as the means to provide the sys-
tem’s self-representation. However similar they are, these two techniques
usually fall on different sides of a gap, namely development time and
runtime, with little interplay between them. In this paper, we review our
approach for the combination of reflection and metamodeling, presenting
some concrete applications of the concept in the context of distributed
systems middleware, as well as propossing further potential applications.

Keywords: Runtime metamodels, Structural reflection, Reflective
middleware.

1 Introduction

Meta-information is at the core of both reflection [1] and metamodeling [2] tech-
niques. It is the means through which the reified features of a base-level system
(such as a middleware platform) are represented in reflective architectures. It
is also the reason for metamodeling techniques to exist, that is, to represent
meta-information in a consistent way. Although metamodeling usually deals with
meta-information in a well-structured way, reflection typically handles it in an
ad hoc fashion. On the other hand, while metamodeling is traditionally limited
to the static (cf. design time) representation of meta-information, reflection en-
ables its dynamic use and evolution. It thus seems natural to combine the two
techniques, enabling the dynamic use of well-structured meta-information.
� This work was funded by CNPq-Brazil (the Brazilian Government’s agency for the

promotion of scientific and technological development), grants 478620/2004-7 and
506689/2004-2.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 232–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.inf.ufg.br/~fmc

www.manaraa.com

Using Runtime Models in Reflective Middleware 233

In the approach advocated in this paper, the structures of meta-information
represented in a metamodel are kept accessible at runtime. As such, they can be
used both at static configuration time, before the system is put to run, and at
runtime, as the basis for the reflective meta-objects to construct the representa-
tion of the reified base-level system. While other approaches can be found in the
literature for the combination of metamodeling and reflection, such as in [3] and
[4], we believe that the approach discussed here is a more natural fit, besides its
potential to be applied in conjunction with those other approaches.

This paper discusses the basic ideas of our approach and presents some of
its concrete applications in the context of middleware platforms. The paper is
structured as follows. Section 2 discusses the fundamental concepts of reflection
and metamodeling as they are used in our work. Section 3 discusses the rela-
tionship between reflection and metamodeling and presents our approach for
the combination of the two techniques. The use of the approach for middleware
configuration and runtime adaptation in diverse and dynamic deployment envi-
ronments is also illustrated in this section. Further extensions and applications of
the approach are considered in Section 4, while Section 5 discusses and compares
related work. Finally, Section 6 presents some concluding remarks.

2 Foundations

2.1 Reflection

The adopted approach to reflective middleware is based on the Lancaster Open
ORB project [5]. The architecture is clearly divided into a base-level, which con-
tains the usual middleware functionality (such as remote binding, remote method
execution, and object references), and a meta-level, which provides the reification
of the base-level features. Both the base- and meta-level are defined in terms of a
uniform component model, which facilitates the identification, at runtime, of the
several functional elements of the platform. The meta-level is accessed through
meta-interfaces that expose a well-defined meta-object protocol for both inspec-
tion and modification (a.k.a. adaptation) of the base-level. Furthermore, in order
to cope with complexity, the meta-level is further divided into four meta-space
models: interface (for the discovery of an interface’s methods and attributes, as
well as for dynamic invocation); interception (for interposing extra behaviour in
the pre/post-processing of interactions); architecture (for the manipulation of the
component configuration of the platform); and resources (which allow the under-
lying resources, such as memory and processor, to be inspected and reconfigured).
Critically, these meta-space models are concerned with particular kinds of meta-
information about the features of the base-level system, although not necessarily
in a structured or unified way. In this paper, we address this limitation.

2.2 Metamodeling

Metamodeling is achieved through the four-level approach of the Meta-Object
Facility (MOF) [6]. The first level (level 0) represents the actual system

www.manaraa.com

234 F.M. Costa, L.L. Provensi, and F.F. Vaz

entities, while, level 1 contains the model from which those entities were in-
stantiated. Level 2 then consists of the meta-model, which defines a language for
describing models, while Level 3 is the core language for describing meta-models.
In the context of metamodeling for middleware, we are particularly interested in
levels 2 and 1, which represent, respectively, the platform’s type system, and the
actual definitions of the (types and templates of the) entities that comprise par-
ticular middleware configurations. Using a metamodeling tool such as the MOF
or, more recently, the Eclipse Modeling Framework (EMF) [7], a middleware
metamodel can be defined and customised, allowing the automatic generation
of tools (such as a repository) that facilitate the definition and storage of types
and templates. Finally, from the type and template meta-information items that
are kept in the repository, generic factories can be used to instantiate concrete
platform configurations (level 0).

The implementation of this meta-information management tool in EMF is
currently under work. When using EMF, it is worth noting that this technology
is mainly meant for model-driven engineering, where a model of a system is de-
fined and tools are used to automatically generate code for the system. That is,
metamodeling is not a main intent of EMF. However, the distinction between a
model and a metamodel is only a matter of reference point, that is, a model can
be taken as the (meta-)model of a another model, instead of directly modeling
a level 0 system. In our case, thus, the metamodel of a middleware platform is
defined as a usual core model in EMF. Then, the code that is generated from
this model (extended with a few customisations) is actually the implementation
of a meta-information repository to store definitions of custom middleware com-
ponents. This repository contains facilities for creating, accessing, deleting and
evolving (see below) such meta-information. The interpretation and use of this
meta-information is outside the scope of EMF and is performed, as described
above, by external component factories, which are provided in the form of mid-
dleware services. In addition, although EMF is mainly meant to be used within
Eclipse, with the exception of the UI editor, the generated implementation can
be used by standalone applications. Indeed, the generated EMF.edit plug-in can
be customised with extensions and used as a true repository of model-related
meta-information, which can be accessed by standalone Java applications (such
as by the factories mentioned above) through a programmatic interface.

3 Combining Reflection and Metamodeling

The reflection and meta-information approaches described above have been com-
bined in a reflective middleware architecture called Meta-ORB [8]. This archi-
tecture was first prototyped in Python [9] as a reference implementation. It was
later reimplemented in Java, using both J2SE and J2ME, aiming at its deploy-
ment in portable devices. This latter implementation is called MetaORB4Java
[10]. Although a complete description of this platform is outside the scope of this
position paper, in the following we describe its main features in what concerns
the combination of reflection and metamodeling.

www.manaraa.com

Using Runtime Models in Reflective Middleware 235

3.1 The Meta-ORB Metamodel

The Meta-ORB architecture is actually a meta-architecture for middleware. Its
core consists of a type system defining the constructs that can be used to define
special-purpose entities used to build custom middleware configurations. The
main constructs are components (which encapsulate functionality) and bind-
ing objects (which encapsulate interaction behaviour). A particular middleware
configuration can be built in terms of a composition of components intercon-
nected by binding objects (which are, themselves, recursively defined in terms
of component and binding compositions).

This type system is represented as a metamodel according to the EMF core
modeling constructs and the EMF Eclipse plug-in was used to generate a basic
repository implementation. This basic repository consists of the implementa-
tion of model elements, with the standard EMF accessor methods, plus editting
functions (both programmatic and UI-based). This repository is currently being
extended with more elaborate accessor methods, in a way that resembles the
CORBA Interface Repository [11]. For instance, the lookup name and lookup id
methods were introduced to enable the search for type definitions in the reposi-
tory hierarchy based on their short names or fully qualified names, respectively.

Figure 1 presents the main parts of the platform’s metamodel. It is organised
in terms of four packages. The BaseIDL package is based on the core
constructs of the CORBA type system, with features that describe the prim-
itive and constructed data types used in the definition of models. The Com-
ponent and Bindings package defines the constructs used to define component
and binding objects, which are the central structural concepts when building
platform configurations. The Interfaces package defines the language to define
the interfaces of components and binding objects, while the Media QoS package
defines the primitives used to associate media types and QoS annotations to
interface definitions.

Fig. 1. High-level view of the Meta-ORB metamodel

www.manaraa.com

236 F.M. Costa, L.L. Provensi, and F.F. Vaz

3.2 Using the Model to Instantiate Platform Configurations

As a representative example of the use of the repository, component and bind-
ing definitions are expressed as instances of their corresponding metamodel el-
ements and stored in the repository. For instance, the definition of a binding
type/template consists of the (names of the) types of the interfaces that the
binding is used to connect at its several endpoints, together with a graph of
internal components and bindings (which are refered to by the names of their
respective types) that comprise the internal configuration of the binding. The
creation of such type definitions can be easily done using the generated UI-based
editor plug-in. Two generic factories were implemented, respectively for the cre-
ation of components and binding objects. These factories obtain the necessary
meta-information elements from the repository (using the lookup-like methods
described above) and use them as the blueprint to create concrete, customised,
middleware configurations composed of components interconnected by binding
objects. Note that a single type definition can be used to define the whole plat-
form configuration. This can be the definition of a distributed binding object
composed of internal components and other, lower-level, bindings. Although this
recursive structure is mirrored in the repository (in terms of separate type defini-
tions that contain or reference other type definitions), the factories (the binding
factory in this case) only needs to be given the name (or id) of the outermost
type definition; the type definitions for the internal components and bindings are
implicitly obtained by the factories without the intervention of the middleware
developer.

Figure 2 illustrates the process of instantiating a new binding object in terms
of meta-information obtained from the Type Repository. From the binding type
and the types of the interfaces to be bound, the factory works out the number and
types of binding endpoints that need to be created. The factory then retrieves
the endpoint definitions (EndPDefA and EndPDefB) from the repository. As
each endpoint is to be created in a different location, the factory delegates their
creation to local factories at each host. Although not shown in the figure, it is the
job of the local factories to retrieve detailed meta-information (e.g., component
types) from the repository to guide the instantiation of the components that
make up each of the binding endpoints. Interestingly, the local factories can
distinguish the kind of environment where the endpoint is being deployed, in
order to instantiate an appropriate version of its configuration. In particular,
we have experimented with the deployment of distributed binding objects in a
heterogeneous environment composed of desktop computers and PDAs, where a
minimal version of endpoint configuration is chosen for deployment on the latter
kind of machine.

3.3 Using the Model to Instantiate Reflective Meta-objects

From the moment particular middleware configurations have been instantiated
and put to run, they can also be subject to the reflection mechanisms of the
platform (see Section 2.1). This means that the components and binding objects

www.manaraa.com

Using Runtime Models in Reflective Middleware 237

Fig. 2. Using the Type Repository to build platform configurations – an example show-
ing the instantiation of a distributed binding object

that make up a configuration can be inspected and adapted at run time. In
order to enable this, the meta-objects that perform the reflection mechanisms
need precise meta-information about such components and bindings in order to
reify them. The meta-objects obtain this meta-information from the respective
component and binding definitions stored in the repository. For instance, as
illustrated in Figure 3, in order to reify the internal configuration of a binding
object, the architecture meta-object needs to obtain the part of that binding’s
definition that describes the component graph (where the nodes are component
types and the edges are either local or distributed bindings) used to instantiate
the binding. From that point on, the meta-object can be used to manipulate the
binding’s self-representation in a causally-connected way, i.e., with all changes in
the representation being reflected in the actual structure of the binding object.
Notice that this self-representation is an exact copy of the corresponding meta-
information defined in the configuration’s model.

The above subsections illustrate one side of the combination of reflection and
metamodeling proposed in this work. The other side is related to the use of
reflection to build new component and binding types that are persisted in the
repository, and is described next.

3.4 Creating New Model Elements Using Reflection

This side of the combined approach refers to the evolution of a model’s elements
as a result of reflection. More specifically, architectural reflection can be used
to dynamically change a component or binding object so that it becomes more
suitable to varying operating conditions or user requirements. Often, this process
leads to new component and binding definitions that might be useful in other
contexts. Therefore, there is a case for making such evolved definitions persistent

www.manaraa.com

238 F.M. Costa, L.L. Provensi, and F.F. Vaz

Fig. 3. Using the Type Repository to get the necessary meta-information to initialise
an architecture meta-object

so they can be reused later. In our approach, these evolved definitions take the
form of versions of the original component or binding definitions (so as to avoid
potential conflicts with other existing definitions) and are stored in the repository
alike. Later, they can be retrieved by factories in order to generate new instances
of components and bindings that incorporate, from the begining, the results of
the adaptations that were made through reflection.

4 Further Applications of the Approach

As can be seen from the above, the integrated management of middleware con-
figuration and dynamic adaptation is a direct benefit of the uniform treatment
given to meta-information. More precisely, the same constructs used to stat-
ically configure a middleware platform also constitute the primitives through
which dynamic adaptation is achieved.

More recently, we are investigating the use of this technique to model other
aspects of middleware platforms, in particular: resource management in grid
computing middleware, and context-awareness in middleware for mobile com-
puting. In the former, an extension of the metamodel is being defined to model
the several kinds of resources available in the machines of a grid, such as pro-
cessing power, memory capacity and network bandwidth. This meta-information
will be used to flexibly (re-)configure the scheduling and allocation of tasks to
processors. In the latter, a metamodel is being defined to allow the representa-
tion of context meta-information associated with the entities in a mobile com-
puting environment, such as users, devices and applications. This will enable
well-informed, i.e., context-aware, architectural adaptation of the Meta-ORB
platform. As a consequence of this extension, the metamodel now has constructs

www.manaraa.com

Using Runtime Models in Reflective Middleware 239

to also represent the entities of the platform’s deployment environment. In both
cases, the advantage of using a runtime explicit metamodel is the intrinsic ex-
tensibility, which allows new kinds of resource or context meta-information to be
seamlessly integrated into the system in a dynamic way. Such dynamic extensions
of the meta-model can be matched by corresponding architectural adaptations
on the parts of the middleware that are responsible for the manipulation of
context and resource meta-information. In general, we believe that any kind of
meta-information present in a system (such as a middleware platform) can be
leveraged by the ability to represent it as part of a runtime metamodel integrated
with reflective capabilities.

5 Related Work

A number of research efforts have approached the theme of using runtime models
for configuration and dynamic adaptation. The Adaptive Object Model approach
[3] is among the first ones. It uses a runtime model of a system in order to facil-
itate dynamic changes to the business rules of the system. Instead of coding the
changes, the user can modify the system’s model and those changes are reflected
into the actual system. This work is similar to ours in the sense the the run-
time model is causally connected to the system. However, it mainly deals with
application-level structural adaptation, whereas we are interested in adaptation
at the underlying middleware level. In addition, the AOM approach is not ex-
plicitly based on a metamodelling technique, which means that the metamodel
governing the runtime models is essentially fixed.

The reflective middleware families approach [12,13] is another current effort
towards merging reflection and runtime modelling. The approach is based on
visual domain-specific modelling techniques to model component frameworks
for middleware. The model is used to generate particular middleware configu-
rations that conform to a family/framework, as well as to consistently adapt
such configurations at runtime. This work is similar to ours in that the runtime
model is effectively used as a basis for reflective adaptation. However, it does
not make an explicit definition of the meta-model that governs the definition of
domain-specific models – there is a fixed meta-model, namely the OpenCOMv2
component model [14], without explicit provisions for its extension. In addition,
the issue of evolving the model as a result of dynamic adaptations, as proposed
in our work, is not considered.

In a more general context, we can compare our work with the trend towards
model-driven architecture [15] and, more generally, model-driven engineering
[16,17]. In common with our approach, modelling is used to describe the archi-
tecture of a system and to generate particular configurations conforming to the
architecture. However, the use of models in MDE is mostly restricted to static
(i.e., configuration) time, without an option to use the model to guide dynamic
adaptations at runtime. In addition, the work on MDE has been mainly focused
on application development, whereas our work focuses on middleware platform
configuration and reconfiguration. On the other hand, the MDA emphasis on the

www.manaraa.com

240 F.M. Costa, L.L. Provensi, and F.F. Vaz

mapping from platform-independent models to platform-specific models, so as to
model distributed applications on a middleware-neutral basis, is not addressed
in our work.

Finally, considering other kinds of meta-information and their association with
reflection, the CARISMA middleware [18] provides an environment where reflec-
tion and metadata (more specifically, context-related metadata) are integrated
to provide the basis for runtime adaptation. Both structural and behavioural
adaptation are carried out as a result of changes in the application’s context,
which in turn are detected by changes in the corresponding metadata. Similarly
to our work, metadata is used as part of the systems self-representation. Differing
their work from ours is the fact that there is not an emphasis on the definition
of an explicit metamodel with clearly defined and common constructs and tools
that are used to model context and architectural metadata, as well as to perform
runtime adaptation.

6 Concluding Remarks

This paper has reviewed the main ideas and applications of our approach for
the combination of runtime metamodels with reflection in the context of dis-
tributed systems middleware. The approach focuses on the integration of the
design-time and runtime uses of an explicit metamodel for middleware (with all
the related meta-information) with reflective introspection and adaptation tech-
niques. The main benefit is the uniform treatment given to static configuration
and dynamic reconfiguration of the platform, which are based on the common
constructs and abstractions defined in the metamodel. While other approaches
have been proposed in the literature to integrate reflection-like techniques and
modeling, as described in section 5, we believe that an effective integration can
only be achieved when such uniformity is present. In this way, it is possible to
aply the same knowledge and tools at configuration time and at runtime.

Although the core ideas of our approach have been around for a while [8,19],
its potential contribution is still underexploited. We believe that the exploitation
of the proposed ideas in mainstream middleware platforms, in conjunction with
more ellaborate techniques for architectural reflection and separation of concerns,
can be of great benefit for the advancement of flexible and adaptive middleware
technologies. It is our goal to contribute to raise this discussion in both the mid-
dleware and the modeling communities, aiming to identify new research opportu-
nities in the area of reflective middleware and runtime metamodels.

References

1. Maes, P.: Concepts and experiments in computational reflection. In: ACM Con-
ference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’87), Orlando, FL USA, American Computer Machinery, ACM Press
(1987)

2. Odell, J.: Meta-modeling. In: Proceedings of OOPSLA’95 Workshop on Metamod-
eling in Object-Orientation, ACM (1995)

www.manaraa.com

Using Runtime Models in Reflective Middleware 241

3. Yoder, J.W., Balaguer, F., Johnson, R.: Architecture and design of adaptive object-
models. SIGPLAN Not. 36(12) (2001) 50–60

4. Bencomo, N., Blair, G.S., Coulson, G., Batista, T.: Towards a meta-modelling ap-
proach to configurable middleware. In: 2nd ECOOP2005 Workshop on Reflection,
AOP and Meta-Data for Software Evolution, Glasgow, Scotland (July 2005)

5. Blair, G.S., Costa, F.M., Saikoski, K., Clarke, N.P.H.D.M.: The design and im-
plementation of Open ORB version 2. IEEE Distributed Systems Online Journal
2(6) (2001)

6. OMG: Meta Object Facility (MOF). Object Management Group, Needham, MA
(2000) OMG Document formal/2000-04-03.

7. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley (2004)

8. Costa, F.M.: Combining Meta-Information Management and Reflection in
an Architecture for Configurable and Reconfigurable Middleware. Ph.D.
thesis, University of Lancaster, Lancaster, UK (September 2001) http://
www.comp.lancs.ac.uk/computing/users/fmc/pubs/thesis.pdf.

9. Costa, F.M.: Meta-ORB: A highly configurable and adaptable reflective middle-
ware platform. In: Proceedings of the 20th Brazilian Symposium on Computer
Networks, Buxzios-RJ-Brazil, Brazilian Computer Society (2002) 735–750

10. Costa, F.M., Santos, B.S.: Structuring reflective middleware using meta-
information management: The Meta-ORB approach and prototypes. Journal of
the Brazilian Computer Society 10(1) (2004) 43–58

11. OMG: The Common Object Request Broker: Architecture and Specification. Rev.
3.0 edn. Object Management Group, Needham, MA USA (2003)

12. Bencomo, N., Blair, G.: Genie: a domain-specific modeling tool for the generation
of adaptive and reflective middleware families. In: The 6th OOPSLA Workshop
on Domain-Specific Modeling, Portland, USA (October 2006)

13. Bencomo, N., Blair, G., Grace, P.: Models, reflective mechanisms and family-based
systems to support dynamic configuration. In: Workshop on MOdel Driven Devel-
opment for Middleware (MODDM), held with the 7th International Middleware
Conference, Melbourne, Australia (November 2006)

14. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J.: OpenCOM
v2: A component model for building systems software. In: Proceedings of IASTED
Software Engineering and Applications (SEA’04), Cambridge-MA, USA (Novem-
ber 2004)

15. OMG: MDA Guide Version 1.0.1. Object Management Group. (June 2003)
16. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer

39(2) (February 2006) 25–31
17. Bézivin, J.: In search of a basic principle for model driven engineering. The

European Journal for the Informatics Professional V(2) (April 2004) 21–24
18. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective

mIddleware System for Mobile Applications. IEEE Transactions on Software En-
gineering 29(10) (October 2003) 929–945

19. Costa, F.M., Blair, G.S.: Integrating reflection and meta-information management
in middleware. In: Proceedings of the International Symposium on Distributed
Objects and Applications (DOA’00), Antwerp, Belgium, IEEE, IEEE (2000)

www.manaraa.com

Applying OMG D&C Specification and ECA
Rules for Autonomous Distributed

Component-Based Systems

Jérémy Dubus and Philippe Merle

INRIA Futurs, Jacquard Project
Laboratoire d’Informatique Fondamentale de Lille - UMR CNRS 8022

Université des Sciences et Technologies de Lille - Cité Scientifique
59655 Villeneuve d’Ascq Cedex France

Jeremy.Dubus@inria.fr, Philippe.Merle@inria.fr

Abstract. Manual administration of complex distributed applications
is almost impossible to achieve. On the one side, work in autonomic
computing focuses on systems that maintain themselves, driven by high-
level policies. Such a self-administration relies on the concept of a control
loop. The autonomic computing control loop involves an abstract repre-
sentation of the system to analyze the situation and to adapt it properly.
On the other side, models are currently used to ease design of complex
distributed systems. Nevertheless, at runtime, models remain useless, be-
cause they are decoupled from the running system, which dynamically
evolves. Our proposal, named Dacar, introduces models in the control
loop. Using adequate models, it is possible to design and execute both
the distributed systems and their autonomic policies. The metamodel
suggested in this paper mixes both OMG Deployment and Configura-
tion (OMG D&C) specification and the Event-Condition-Action (ECA)
metamodels. This paper addresses the different concerns involved in the
control loop and focuses on the metamodel concepts that are required to
express entities of the control loop. This paper also gives an overview of
our Dacar prototype and illustrates it on a ubiquitous application case
study.

1 Introduction

While being more and more complex, business applications are also distributed
on an increasing number of machines. The resulting heterogeneity of the deploy-
ment domain —i.e. the set of machines that host these applications— makes
deployment and maintenance of these applications become critical tasks. In par-
ticular, with the emergence of grid and ubiquitous computing [5,14], human ad-
ministration of applications is almost impossible to achieve, since the deployment
domain is not statically known at deployment-time. Moreover, it can strongly
evolve during runtime (e.g. nodes can appear or disappear dynamically). This
statement led to the creation of a new research topic called Autonomic Com-
puting [10]. Work in autonomic computing focuses on systems able to maintain

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 242–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Applying OMG D&C Specification and ECA Rules 243

themselves during runtime, driven by high-level policies. In autonomic com-
puting, the control loop is the core concept that helps in achieving autonomic
management and reconfiguration of applications. This control loop involves an
abstract representation of the system analyzing the situation and adapting the
application properly. There is a causal link between the abstract representation
of the system and the running system.

Models are widely employed to design distributed applications. The use of
models allows the designer to only specify an abstract view of a system to be
deployed. Using these abstract models, many approaches (e.g. the Model-Driven
Architecture [7]) are able to generate a more concrete view of the system, and
the task of the designer is drastically simplified. Unfortunately, the models of an
application become useless once the system is deployed, since models and systems
are decoupled and they evolve independently. However, introducing models as
the abstract representation of a system in the autonomic computing control loop
makes the use of models still relevant at runtime. The model is causally linked to
the running system, and it evolves in the same way. Then autonomic computing
can benefit from the use of models by having a complete abstract representation
of the system to extract fine-grained information, and then apply the adequate
reconfiguration.

Dacar (for Distributed Autonomous Component-based ARchitectures) is our
proposal that consists in establishing a metamodel that mixes the OMG D&C
specification [8] and ECA rules [3], in order to inject models as computation
basis in autonomic computing.

The remainder of the paper is organized as follows. Section 2 presents the
fundamental principles of autonomic computing as defined in [10]. Section 3
discusses the key research challenges to address the problem of introducing
models in autonomic computing. Section 4 presents Dacar, our proposition
for model-based autonomic computing. An illustrative ubiquitous example is
detailled in Section 5. Section 6 discusses other work related to autonomic dis-
tributed component-based systems. Finally, Section 7 exposes our conclusions
and perspectives.

2 Principles of Autonomic Computing

The essence of autonomic systems relies on the notion of control loop (represented
in Figure 1) as defined in [10]. This loop consists of four phases: Monitoring the
system, Analyzing the identified changes coming from the system, Planning the
adequate reconfiguration actions, and Applying them. The analyzing and plan-
ning phases are relying on the Knowledge part information for computation. At
runtime, this knowledge part must always be conform to the execution envi-
ronment. It means that every change in the execution environment must lead
to an update of the knowledge part, and vice-versa. Then, a causal link must
be maintained between the knowledge part and the execution environment. We
suggest to separate the architecture of the control loop into three parts:

www.manaraa.com

244 J. Dubus and P. Merle

Fig. 1. The control loop of autonomic computing

• The knowledge part represents the abstract autonomous system. First,
this representation must be complete in order to be aware of any information that
may influence decisions to take. Additionally, it must be reconfigurable, because
the abstract representation must evolve in the same way that the application
deployed onto the domain. It must also be a high-level representation where
only relevant information concerning the application must be represented, to
avoid getting lost into details when computing a decision.

• The policy part groups the Analyze and Plan phases. They are responsi-
ble of exploiting the knowledge part to analyze situation and prepare adequate
reconfigurations. The global autonomic policy is gathered here.

• The platform part encompasses the execution environment, and the Mon-
itor and Execute parts. This part encompasses operations to deploy, reconfigure,
and monitor the running system. Those operations depends on the underlying
middleware technology used.

3 Key Research Challenges

This section discusses the key research challenges addressing the introduction of
models into autonomic computing. Consequently, we try to answer the following
questions: How models of autonomic applications should look like? How the
control loop can be split? Which metamodels can be used to provide concepts
to express entities of the control loop?

The control loop architecture has been split into three parts that represent
the different concerns of an autonomic system.

First, the platform part of the control loop should be modelled. This plat-
form should provide monitoring information about the running application as
well as deployment operations to instantiate applications onto the deployment
domain. Then, a unique metamodel can hardly be used to express any runtime
platform model. Consequently, we decide to encapsulate the platform part into
one software component with clearly defined interfaces providing the required
operations. The details about the implementation of this component rely on the
runtime platform chosen for executing applications. By employing a platform

www.manaraa.com

Applying OMG D&C Specification and ECA Rules 245

component, we maintain independence from the middleware layer running the
applications (e.g. J2EE, CCM, SCA, etc.).

The second part is about the knowledge part. Which information about the
application a knowledge model should encompass? This part must contain all the
information relevant to analyze the system and to plan adequate reconfiguration
actions. This model must provide the concepts to:

• Describe deployment domain entities —i.e. Computers available on the net-
work, bandwidth of interconnections between these computers, etc. These con-
cepts are needed since in the case of a ubiquitous or grid-tailored application,
the knowledge about computer’s appearance/disappearance is critical.

• Describe the components of the applications. This encompasses the compo-
nent types, the interfaces they provide and require, the location of the binaries
of these components, etc. This information is needed because the reconfiguration
of running component instances requires the knowledge of their specification.

• Express the structure of the concerned applications, which we also call the
Deployment Plan. It consists in information about the component instances to
deploy, the computers hosting these instances must be deployed, and how these
instances are bound together. This information about the system architecture
is crucial. Without knowing this information, it is impossible to deploy and
start the application. Moreover, autonomic management of applications often
demands dynamical reconfiguration of the application structure.

To model application data such as component types, deployment plan, there
are already existing solutions, like the Architecture Description Languages
(ADL) [11]. However, most of the existing ADLs are specific to a given compo-
nent model and the few that are generic do not provide concepts to express de-
ployment domain entities. Nevertheless, the Object Management Group (OMG)
has recently adopted a new specification called Deployment and Configuration of
Distributed Component-based Applications [8]. This specification defines a meta-
model with two parts, the Component Data part and the Component Manage-
ment part. The first part describes the packaged components, with their typed
interfaces and implementations, whereas the second part describes the deploy-
ment infrastructure and the way it handles data from the first part to execute the
deployment process. The Component Data part of the OMG D&C specification
provides the three parts of our knowledge metamodel: the Types, the Domain
and the Deployment Plan. From this point of view, OMG D&C is a convenient
knowledge metamodel to use.

However, using OMG D&C means forgetting some of the aspects of a running
system. For instance, it is impossible to express components container policies,
such as transactions, persistency or lifecycle concerns. Nevertheless, there exist ex-
tensions to specify extra-functional container policies, such as the CORBA Com-
ponent Descriptors (CCD). Therefore, in order to reify and control every
fine-grained concern of a component-based application, the OMG D&C
metamodel should be extended.

www.manaraa.com

246 J. Dubus and P. Merle

The third part describes the high-level autonomic policy. This part must de-
scribe exhaustively the autonomic policies of an application. How should these
policies be expressed? Which concepts can allow the designer to specify precisely
the exhaustive autonomic policies of a distributed component-based application,
knowing that the model at runtime should have sufficient information to analyze
the situation and to take the right decision when needed?

There are three main concepts in order to express an autonomic policy. First,
a stimulus part is an event that triggers the autonomic policy. This stimulus
emerges in a certain context, which can be modelled as a set of properties of the
application or the stimulus itself. Finally, there is an execution part which rep-
resents the actions to do in consequence. We argue that the ECA rule paradigm,
well-known in the domain of active databases [3], fits well our needs for the
expression of autonomic policies. The Event part represents the stimulus, the
conditions of a rule are the context of this rule trigger, and the actions represent
the execution part of the model.

Another issue to be raised concerning this part of the model is to decide
whether the policy expression must be fine or coarse-grained. In other words,
the question is about having an application-specific autonomic policy or com-
posing generic fine-grained policies to build an application global policy. Our
opinion is that by composing fine-grained policies, it will be possible to extract
independent and reusable autonomic micro-policies. It is then possible to define
policies by composing both independent and more application-specific policies.
On the other way the well-known feature interactions defined in [13] (such as
the Shared Trigger Interaction, the Looping Interaction, etc.) can be detected
and resolved thanks to the fine granularity of our rules.

Using such fine-grained policies will increase the numbers of policies involved.
Since rules can trigger each other, we are facing the threat of a combinatorial
explosion of recursive rule triggers. But resolving Looping Interaction means no
infinite loop is possible. Moreover, the execution of the policies is very fast since
they are fine-grained. Finally, rule interaction can be statically known. Thus
there are ways to control the explosion of rule interactions.

4 Our Dacar Prototype

Dacar (for Distributed Autonomous Component-based ARchitectures) is our
prototype to build autonomic distributed CORBA component-based applica-
tions. We use the OpenCCM platform (http://openccm.objectweb.org) to de-
ploy applications. The OMG D&C descriptors are reified into memory as a graph
of Java objects that represents the executable model of the running applications.
Currently, rules are not expressed using a model since our rule metamodel has to
be completely defined. The rules are implemented as Fractal lightweight compo-
nents (http://fractal.objectweb.org). Monitoring and reconfiguration exe-
cution parts are implemented using specific OpenCCM mechanisms [9].

We consider two sorts of events: The endogenous events are coming from the
knowledge part (e.g., a new instance description has been added in the domain
part). The knowledge part must be a model that reacts to changes. It means that

www.manaraa.com

Applying OMG D&C Specification and ECA Rules 247

when a value or any concept is modified in the model, an event must be sent.
This is possible using the design pattern Observer for example. Every change in
the knowledge model must lead to the creation of an event.

The exogenous events are events coming from the execution platform (e.g., a
new node has been started in the deployment domain). The condition part of
a rule represents conditions that event properties must fulfil in order to trigger
the rule. The action part can affect either the knowledge part or the platform.
Thus, we can classify rules in three categories (represented in Figure 2).

Fig. 2. The three types of rules involved in Dacar platform

The Monitoring rules are triggered by exogenous events. They perform
actions on the knowledge part to update it in accordance with changes that
occurred onto the running platform, e.g. When a new node is detected in the
execution environment, add its description in the domain part of the knowledge
part. These rules are generic and reusable across applications. The Deployment
rules are triggered by endogenous events. They perform actions on the running
platform to update it according to changes that occurred onto the knowledge
part, e.g. When a new instance is declared in the deployment plan part of the
knowledge part, prepare the deployment of this instance on the execution en-
vironment. These rules are also generic and reusable across applications. The
Architectural rules are triggered by endogenous events. They perform actions
on the knowledge part to update it according to properties that this knowledge
part must fulfil, e.g. When a new Client instance is declared in the plan of the
knowledge part, declare a binding between this Client component and a Server
component instance existing in the plan. These rules are application specific.

www.manaraa.com

248 J. Dubus and P. Merle

Using these three categories of rules it is possible to ensure the causal link be-
tween the knowledge part and the application at runtime. The monitoring rules en-
sure that every change occurring in the execution environment leads to an update
operation of the knowledge part. The deployment rules ensure that every concept
declared in the plan of the knowledge part is prepared to be deployed on the exe-
cution environment. Both monitoring and deployment rules are the generic micro-
policies enounced in Section 3. Finally, the architectural rules are the only specific
part of the policy; they are responsible of the self-adaptation policy of the applica-
tion. It refines the knowledge part according to changes emerging from the knowl-
edge part itself. It is possible to express complete autonomic applications using
our metamodel. Dacar has been evaluated on the design and execution of several
autonomic CORBA component-based applications.

5 Case Study

This section illustrates the Dacar concepts through a simple scenario of au-
tonomous application. Figure 4 represents the architecture of our scenario. More
details about this scenario can be found in [4].

This example takes place in the context of a ubiquitous application. In a rail-
way station, there is a RailwayStation component that can provide information
about the trains on departure, relying on a DataBaseTrainSchedule component.
Every person that enters the station and has a Personal Digital Assistant (PDA)
must be able to request the RailwayStation component. In order to realize this,
a dedicated TrainGUI component is implemented and must be deployed on ev-
ery PDA that wants to obtain the service. With most of existing ADLs, it is
impossible to specify that a TrainGUI component must be deployed on every
PDA that enters the domain. Moreover, these deployed TrainGUI components
must be bound to the RailwayStation instance.

We can first introduce the generic monitoring rule R_M, in charge of adding new
node descriptions into the domain part of the autonomic computing knowledge.
We can also give details about one generic deployment rule R_D that is in charge
of deploying component instances declared in the plan. They are expressed on
Figure 3.

Two architectural rules, described on the Figure 4, are required to implement
autonomic behaviours of our simple ubiquitous example. This rule R1 ensures
that every terminal that enters the domain gets an instance of TrainGUI. The
second rule R2 ensures that every TrainGUI is connected to the RailwayStation
component. With these only two rules, the architecture will be extended to take
into account every PDA that enters the domain. These rules reuse generic de-
ployment and monitoring rules that are in charge of applying the deployment
operations when needed, and adding the description of new nodes into the knowl-
edge model when it is detected, respectively.

The potential gains of our approach are numerous. First, the ECA rules rep-
resent a convenient and natural way to express reconfiguration policies, as well
deployment and monitoring operations. Moreover, architectural rules can be

www.manaraa.com

Applying OMG D&C Specification and ECA Rules 249

RULE R M
EVENT

A new node N is detected onto the Platform
CONDITION

N.profile == PDA
ACTION

knowledge.domain.addNode(N)

RULE R D
EVENT

A new instance I
is declared in the knowledge.plan part

CONDITION
true (no condition)

ACTION
platform.deployInstance(I)

Fig. 3. The generic rules of the example

designed to factorize the description of very large and redundant applications,
just like the simple example we gave in this section. Indeed in our example,

RULE R1
EVENT

A new node N is declared
in the knowledge.domain part

CONDITION
N.profile == PDA

ACTION
knowledge.plan.declareInstance
(TrainGUI , ”cl”+N.name, N)

RULE R2
EVENT

New instance I is declared
in the knowledge.plan part

CONDITION
I.type == TrainGUI

ACTION
knowledge.plan.addConnection
(I.the service, RS.the service)

Fig. 4. An autonomic train service example and its specific adaptation rules

the same actions are repeated when new PDA enter the domain, but the two
concise architectural rules factorize these actions. Finally for critical systems,
there is no need to monitor the application and to manually interact with the
system whenever a human intervention —that is also error-prone— is needed.
Any arbitrary part of the application can be self-managed.

6 Related Works

In this section, we will discuss work addressing distributed autonomic applica-
tions, to justify the relevance of the metamodels we defined and the way we
interpret models at runtime to deploy and execute autonomic applications.

Jade proposes a component-based implementation of a control loop to admin-
istrate J2EE applications on clusters [2]. The target platform and the application
are modelled using Fractal components, in order to provide management inter-
faces. A sensor mechanism is employed to monitor the system and communicate

www.manaraa.com

250 J. Dubus and P. Merle

the observations to the control loop. Jade allows the architectures to be recon-
figured according to infrastructure context changes. It does not provide way to
express architecture-specific adaptation mechanisms. Moreover the knowledge
part of Jade consists only in a Fractal component assembly which is not as
expressive as a real typed model defined by a metamodel.

CoSMIC is a model-driven generative programming tool-chain that per-
mits efficient deployment and reconfiguration in Distributed Real-time Em-
bedded (DRE) systems [6]. It is also based on the OMG D&C specification
to specify deployment process. Nevertheless, CoSMIC only monitors Quality-
of-Service results. Autonomous reconfigurations are then triggered by perfor-
mance leaks in the system. This adaptation process is driven neither by the
architecture nor by its deployment domain evolutions, by opposition to our
approach.

Finally, Plastik is a meta-framework that provides mechanisms to man-
age runtime reconfigurations of component-based software, with programmed
changes —i.e. foreseen reconfigurations at design-time— versus ad hoc changes
—i.e. not foreseen at design-time [1]. This approach relies on reactive recon-
figurations, in the same way that our approach. It proposes two layers, an ar-
chitectural one, and a runtime one, just like in Dacar. Nevertheless, the only
coherency supported between the two layers is from the ADL layer to the plat-
form layer. This means that in case of runtime-level spontaneous changes, the
architectural representation of the system is deprecated, and then useless. In our
approach, a causal link is maintained between the two layers.

7 Conclusions and Future Work

In this paper, we have presented our vision of model-based autonomic com-
puting in which a metamodel composed of three parts have been found out to
express distributed component-based autonomic applications. This led to the
implementation of Dacar, a framework to model autonomic component assem-
blies, following the vision of autonomic computing. Dacar reuses the OMG
D&C architecture metamodel to build and manipulate the knowledge part of
the control loop, and reuses the ECA rules paradigm to express the applicative
adaptation policies. The first point of our future work will consist in estab-
lishing precisely the exhaustive metamodel used in Dacar, especially the rule
metamodel. Then it will be possible to ensure properties expressed in the model
and so to build safe autonomic architectures. We plan to use a metamodeling
language such as Kermeta [12] in order to build and reconfigure real models of
both architecture and adaptation policy.

References

1. Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing Dynamic Reconfig-
uration in Component-based Systems. Proceedings of the European Workshop on
Software Architectures (EWSA’05), pages 1–18, June 2005. Pisa, Italy.

www.manaraa.com

Applying OMG D&C Specification and ECA Rules 251

2. Sara Bouchenak, Fabienne Boyer, Emmanuel Cecchet, Sébastien Jean, Alan
Schmitt, and Jean-Bernard Stefani. A Component-based Approach to Distributed
System Management - A Use Case with Self-Manageable J2EE Clusters. In 11th
ACM SIGOPS European Workshop, Leuven, Belgium, September 2004.

3. Thierry Coupaye and Christine Collet. Denotational Semantics for an Active Rule
Execution Model. 2nd International Workshop on Rules in Database Systems,
Lecture Notes In Computer Science, 985:36–50, 1995. London, United Kingdom.

4. Areski Flissi, Philippe Merle, and Christophe Gransart. A service discovery and au-
tomatic deployment component-based software infrastructure for Ubiquitous Com-
puting. Ubiquitous Mobile Information and Collaboration Systems, CAiSE Work-
shop, (UMICS 2005), June 2005. Porto, Portugal.

5. Ian Foster and Carl Kesserman. The Grid: Blueprint for a New Computing Infras-
tructure. 2004. ISBN: 1-55860-933-4.

6. Aniruddha Gokhale, Balachandran Natarajan, and Douglas C. Schmidt et al. CoS-
MIC : An MDA Generative Tool for Distributed Real-time and Embedded Com-
ponent Middleware and Applications. In Proceedings of the ACM OOPSLA 2002
Workshop on Generative Techniques in the Context of the Model Driven Architec-
ture, November 2002. Seattle, USA.

7. Object Management Group. Model Driven Architecture (MDA). Technical Report
Document number ormsc/2001-07-01, Object Management Group, July 2001.

8. Object Management Group. Deployment and Configuration of Distributed
Component-based Applications Specification. Available Specification, Version 4.0
formal/06-04-02, April 2006.

9. Andreas Hoffman, Tom Ritter, and Julia Reznik et al. Specification of the Deploy-
ment and Configuration. IST COACH deliverable document D2.4, IST COACH,
July 2004. http://www.ist-coach.org.

10. Jeffrey Kephart and David Chess. The Vision of Autonomic Computing. Technical
report, IBM Thomas J. Watson, January 2003. IEEE Computer Society.

11. Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions on
Software Engineering, 26, issue 1:70–93, January 2000.

12. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executabil-
ity into Object-Oriented Meta-Languages. In Proceedings of MODELS/UML’2005,
pages 264–278, October 2005. Montego Bay, Jamaica.

13. Stephan Reiff-Marganiec and Kenneth J. Turner. Feature Interaction in Policies.
Computer Networks 45, pages 569—584, March 2004. Department of Computing
Science and Mathematics, University of Stirling, United Kingdom.

14. Mark Weiser. The Computer for the 21st Century. Scientific American, pages
94–100, September 1991.

www.manaraa.com

Summary of the
Workshop on Multi-Paradigm Modeling:

Concepts and Tools

Holger Giese1, Tihamér Levendovszky2, and Hans Vangheluwe3

1 Department of Computer Science
University of Paderborn

D-33098 Paderborn, Germany
hg@upb.de

2 Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, Hungary
tihamer@aut.bme.hu

3 Modelling, Simulation & Design Lab
School of Computer Science

McGill University
Montréal, Québec, Canada

hv@cs.mcgill.ca

Abstract. This paper reports on the findings of the first Workshop on
Multi-Paradigm Modeling: Concepts and Tools. It contains an overview
of the presented papers and of the results of three working groups which
addressed multiple views, abstraction, and evolution. Besides this, a def-
inition of the problem space, the main concepts, and an appropriate ter-
minology for multi-paradigm modeling as presented and discussed during
the workshop are provided.

Keywords: Modeling, Meta-modeling, Multi-Paradgim Modeling,
Multi-Formalism.

1 Introduction

Complex software-based systems today often integrate different beforehand iso-
lated subsystems. Thus, for their model-driven development multiple formalism
at different levels of abstraction from possibly different domains have to be in-
tegrated. This is especially true when besides general purpose languages such
as the UML also domain specific languages are employed. In this first workshop
on Multi-Paradigm Modeling (MPM) at the MoDELS conference, a forum for
researchers and practitioners to discuss the resulting problems and challenges
has been set up.

An initial invited talk was given by Hans Vangheluwe in order to provide some
generally agreed upon definitions of multi-paradigm modeling.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 252–262, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Summary of the Workshop on Multi-Paradigm Modeling 253

The paper continues with a definition of the problem space, main concepts,
and terminology for multi-paradigm modeling in Section 2. Then, the presented
papers are located within the introduced problem space in Section 3 before we
summarized the findings of the working groups which have been set up within
the workshop in Section 4. Finally, a list of the program committee follows in
Section 5.

2 Multi-Paradigm Modeling

In this section, the foundations of Multi-Paradigm Modeling (MPM) are pre-
sented. In particular, we introduce meta-modeling and model transformation as
enablers for Multi-Paradigm Modeling. MPM encompasses both multi-formalism
and multi-abstraction modeling of complex systems. To provide a framework for
the above, the notion of a modeling language is first dissected. This leads quite
naturally to the concept of meta-modeling as well as to the explicit modeling
of model transformations. The notion of abstraction is explored in the working
group results section 4.2.

Models are an abstraction of reality. The structure and behavior of systems
that we wish to analyze or design can be represented by models. These mod-
els, at various levels of abstraction, are always described in some formalism or
modeling language. To “model” modeling languages and ultimately synthesize
visual modeling environments for those languages, we will break down a mod-
eling language into its basic constituents [1]. The two main aspects of a model
are its syntax (how it is represented) on the one hand and its semantics (what
it means) on the other hand.

The syntax of modeling languages is traditionally partitioned into concrete
syntax and abstract syntax. In textual languages for example, the concrete syn-
tax is made up of sequences of characters taken from an alphabet. These char-
acters are typically grouped into words or tokens. Certain sequences of words
or sentences are considered valid (i.e., belong to the language). The (possibly
infinite) set of all valid sentences is said to make up the language. Costagliola
et. al. [2] present a framework of visual language classes in which the analogy
between textual and visual characters, words, and sentences becomes apparent.
Visual languages are those languages whose concrete syntax is visual (graphical,
geometrical, topological, . . .) as opposed to textual.

For practical reasons, models are often stripped of irrelevant concrete syntax
information during syntax checking. This results in an “abstract” representation
which captures the “essence” of the model. This is called the abstract syntax.
Obviously, a single abstract syntax may be represented using multiple concrete
syntaxes. In programming language compilers, abstract syntax of models (due
to the nature of programs) is typically represented in Abstract Syntax Trees
(ASTs). In the context of general modeling, where models are often graph-like,
this representation can be generalized to Abstract Syntax Graphs (ASGs).

Once the syntactic correctness of a model has been established, its meaning
must be specified. This meaning must be unique and precise. Meaning can be

www.manaraa.com

254 H. Giese, T. Levendovszky, and H. Vangheluwe

expressed by specifying a semantic mapping function which maps every model in
a language onto an element in a semantic domain. For example, the meaning of a
Causal Block Diagram can be specified by mapping onto an Ordinary Differential
Equation. For practical reasons, semantic mapping is usually applied to the
abstract rather than to the concrete syntax of a model. Note that the semantic
domain is a modeling language in its own right which needs to be properly
modeled (and so on, recursively). In practice, the semantic mapping function
maps abstract syntax onto abstract syntax.

To continue the introduction of meta-modeling and model transformation
concepts, languages will explictly be represented as (possibly infinite) sets as
shown in Figure 1. In the figure, insideness denotes the sub-set relationship. The

Fig. 1. Modeling Languages as Sets

dots represent model which are elements of the encompassing set(s).
As one can always, at some level of abstraction, represent a model as a graph

structure, all models are shown as elements of the set of all graphs Graph. Though
this restriction is not necessary, it is commonly used as it allows for the design,
implementation and bootstrapping of (meta-)modeling environments. As such,
any modeling language becomes a (possibly infinite) set of graphs. In the bottom
centre of Figure 1 is the abstract syntax set A. It is a set of models stripped of
their concrete syntax.

www.manaraa.com

Summary of the Workshop on Multi-Paradigm Modeling 255

Meta-modeling is a heavily over-used term. Here, we will use it to denote
the explicit description (in the form of a finite model in an appropriate meta-
modeling language) of the Abstract Syntax set. Often, meta-modeling also covers
a model of the concrete syntax. Semantics is, however, not covered. In the figure,
the Abstract Syntax set is described by means of its meta-model. On the one hand,
a meta-model can be used to check whether a general model (a graph) belongs
to the Abstract Syntax set. On the other hand, one could, at least in principle,
use a meta-model to generate all elements of the language. This explains why
the term meta-model and grammar are often used inter-changeably.

Several languages are suitable to describe meta-models in. Two approaches
are in common use:

1. A meta-model is a type-graph. Elements of the language described by the
meta-model are instance graphs. There must be a morphism between an
instance-graph (model) and a type-graph (meta-model) for the model to
be in the language. Commonly used meta-modeling languages are Entity
Relationship Diagrams (ERDs) and Class Diagrams (adding inheritance to
ERDs). The expressive power of this approach is often not sufficient and
a constraint language (such as the Object Constraint Language) specifying
constraints over instances is used to further constrain the set of valid models
in a language. This is the approach used by the OMG to specify the abstract
syntax of the Unified Modeling Language (UML).

2. A more general approach specifies a meta-model as a transformation (in an
appropriate formalism such as Graph Grammars) which, when applied to a
model, verifies its membership of a formalism by reduction. This is similar to
the syntax checking based on (context-free) grammars used in programming
language compiler compilers. Note how this approach can be used to model
type inferencing and other more sophisticated checks.

Both types of meta-models can be interpreted (for flexibility and dynamic
modification) or compiled (for performance).

Note that when meta-modeling is used to synthesize interactive, possibly vi-
sual modeling environments, we need to model when to check whether a model
belongs to a language. In free-hand modeling, checking is only done when explic-
itly requested. This means that it is possible to create, during modeling, syntac-
tically incorrect models. In syntax-directed modeling, syntactic constraints are
enforced at all times during editing to prevent a user from creating syntactically
incorrect models. Note how the latter approach, though possibly more efficient,
due to its incremental nature –of construction and consequently of checking– may
render certain valid models in in the modeling language unreachable through in-
cremental construction. Typically, syntax-directed modeling environments will
be able to give suggestions to modelers whenever choices with a finite number
of options present themselves.

The advantages of meta-modeling are numerous. Firstly, an explicit model
of a modeling language can serve as documentation and as specification. Such
a specification can be the basis for the analysis of properties of models in the
language. From the meta-model, a modeling environment may be automatically

www.manaraa.com

256 H. Giese, T. Levendovszky, and H. Vangheluwe

generated. The flexibility of the approach is tremendous: new languages can
be designed by simply modifying parts of a meta-model. As this modification
is explicitly applied to models, the relationship between different variants of a
modeling language is apparent. Above all, with an appropriate meta-modeling
tool, modifying a meta-model and subsequently generating a possibly visual
modeling tool is orders of magnitude faster than developing such a tool by hand.
The tool synthesis is repeatable and less error-prone than hand-crafting.

As a meta-model is a model in an appropriate modeling language in its own
right, one should be able to meta-model that language’s abstract syntax too.
Such a model of a meta-modeling language is called a meta-meta-model. It
is noted that the notion of “meta-” is relative. In principle, one could con-
tinue the meta- hierarchy ad infinitum. Luckily, some modeling languages can
be meta-modeled by means of a model in the language itself. This is called
meta-circularity and it allows modeling tool and language compiler builders to
bootstrap their systems.

A model in the Abstract Syntax set (see Figure 1) needs at least one concrete
syntax. This implies that a concrete syntax mapping function κ is needed. κ maps
an abstract syntax graph onto a concrete syntax model. Such a model could be
textual (e.g., an element of the set of all Strings), or visual (e.g., an element of
the set of all the 2D vector drawings). Note that the set of concrete models can be
modeled in its own right. Also, concrete syntax sets will typically be re-used for
different languages. Often, multiple concrete syntaxes will be defined for a single
abstract syntax, depending on the user. If exchange between modeling tools is
intended, an XML-based textual syntax is often used. If in such an exchange,
space and performance is an issue, an binary format may be used instead. When
the formalism is graph-like as in the case of a circuit diagram, a visual concrete
syntax is often used for human consumption. The concrete syntax of complex
languages is however rarely entirely visual. When, for example, equations need
to be represented, a textual concrete syntax is more appropriate.

Finally, a model m in the Abstract Syntax set (see Figure 1) needs a unique
and precise meaning. As previously discussed, this is achieved by providing a Se-
mantic Domain and a semantic mapping function M. This mapping can be given
informally in English, pragmatically with code or formally with model transfor-
mations. Natural languages are ambiguous and not very useful since they cannot
be executed. Code is executable, but it is often hard to understand, analyze and
maintain. It can be very hard to understand, manage and derive properties from
code. This is why formalisms such as Graph Grammars are often used to specify
semantic mapping functions in particular and model transformations in general.
Graph Grammars are a visual formalism for specifying transformations. Graph
Grammars are formally defined and at a higher level than code. Complex behav-
ior can be expressed very intuitively with a few graphical rules. Furthermore,
Graph Grammar models can be analyzed and executed. As efficient execution
may be an issue, Graph Grammars can often be seen as an executable specifi-
cation for manual coding. As such, they can be used to automatically generate
transformation unit tests.

www.manaraa.com

Summary of the Workshop on Multi-Paradigm Modeling 257

Within the context of Multi-Paradigm Modeling, we have chosen to use the
following terminology.

– A language is the set of abstract syntax models. No meaning is given to these
models.

– A concrete language comprises both the abstract syntax and a concrete syn-
tax mapping function κ. Obviously, a single language may have several con-
crete languages associated with it.

– A formalism consists of a language, a semantic domain and a semantic map-
ping function giving meaning to model in the language.

– A concrete formalism comprises a formalism together with a concrete syntax
mapping function.

This terminology will be used in the sequel.

3 Presented Papers

The paper [3] summarizes the main achievements with respect to Mechatronic
UML and relates it to Multi-Paradigm Modeling. The approach combines con-
trol engineering, electrical engineering, mechanical engineering, and software en-
gineering disciplines to describe and verify reconfigurable mechatronic systems.
The multidisciplinary nature of Mechatronic UML gives a good case study for
multiparadigm modeling: different parts of a mechatronic system are described
by different formalisms, such as differential equations or timed automata.

The paper [4] presents a tool named Computer Aided Method Engineering
(CAME). This approach uses hierarchical activity diagram to model an arbitrary
software development process. To these process steps, models can be attached.
The modeling languages are created with metamodeling techniques. The models
created for different paradigms are assembled manually.

The popularity of block diagrams motivates the work [5], which offers a trans-
lational semantics for block diagrams by syntactically translating them into
Haskell. The declarative notion of Haskell facilitates more rigorous specification
as opposed to its imperative counterparts, such as C. The translation applies
syntactic Haskell extensions developed by the authors.

The paper [6] uses an approach underpinned by abstract algebraic and cat-
egorical constructs. The main idea is to formalize the semantics by specifying
the domains as lattices of coalgebras. Between the lattices, Galois connections
can be established. If this connection is maintained during the abstractions or
concretizations, the important properties are preserved. In order to check the
consistency of distinct domains, pullback constructs are provided to derive a
common specification. These results can be applied to formalize the composition
of multi-paradigm applications.

The paper [7] proposes a formalism for modeling language composition with
a low-level language. The low-level language referred to as L3 consists of three
aspects: structural, descriptive and behavioral. The multi-paradigm composition
technique is illustrated with two simplified UML diagrams, namely, the class and
activity diagrams enhanced with OCL constraints.

www.manaraa.com

258 H. Giese, T. Levendovszky, and H. Vangheluwe

The paper [8], which can be found in this volume, discusses a conceptual
approach to define declarative model integration languages. The integration be-
havior is bound to the metamodel. Furthermore, the authors build a conceptual
framework which realizes the complex integration operations on the global level
to efficient and simple local operators.

4 Working Group Results

4.1 Multiple Views

The first working group addressed the topic of multi-view modelling. Multi-view
modelling is concerned with the common practice of modelling a single system
by means of a collection of view models. Each of these view models can possibly
be represented in a different concrete formalisms. As discussed in Section 2,
differences between concrete formalisms may be at the level of concrete syntax,
abstract syntax, or even semantics. Together, the multiple views allow a modeller
to express all relevant knowledge about a system under study. Allowing multiple
views in multiple concrete formalisms allows the modeller to express different
aspects of his knowledge in the most appropriate fashion, thereby minimizing
accidental complexity.

Multi-view modelling does come at a price though. The different views should
be consistent. In particular, if one view is modified, other views describing the
same aspect of the system may need to be updated. Note that updating may be
trivial if the views only differ in concrete syntax. In the worst case however, the
semantics of the different formalisms in which the views are expressed may differ.
In this case, formalism transformation may be required. It is noted that updating
(in a Model-View-Controller fashion) is in principle always possible if update
mappings are available between all views. For efficiency reasons, the quadratic
(in the number of views) number of required mappings and the quadratic (in the
number of view models) number of updates can be reduced to a linear number
if it is possible to describe a single repository model of which all views are
projections.

Also, one often needs to know whether a collection of views completely de-
scribes a system (given some notion of completeness). The issues mentioned
above are exacerbated if different views describe the system at different levels of
abstraction. The working group discussed abstraction at length and came to sim-
ilar conclusions as those of the second working group (though not formalized).
Hence, we refer to the next section for a treatment of this subject.

Jean-Marie Favre pointed out the existence of a mega-model of multi-view
modelling in the reverse engineering community. This mega-model relates views
which need to conform to viewpoints. Those in turn are used to cover concerns.
Each of these may be described in an appropriate formalism.

4.2 Abstraction

The second working group worked on the topic of abstraction and how models
of the same and different type (formalism) are related to each other during

www.manaraa.com

Summary of the Workshop on Multi-Paradigm Modeling 259

the model-driven development using abstraction and its opposite refinement in
different forms.

As foundation for the notion of abstraction, the group started with defining
the information contained in a model M as the different questions (properties)
P = I(M) which can be asked concerning the model (|P | and p, p′ ∈ P : p �= p′)
and either result in true or false (M |= p or M �|= p).

For a model, it holds in general that only a restricted set of questions (prop-
erties) are correctly addressed by the model w.r.t. the original matter. Thus, for
example, questions concerning the color of a diagram or the layout of a text do
not matter. These relevant questions (properties) and the related notion of a bit,
then served also to define abstraction as well as several related relations.

A relation between two models M1 and M2 can have the character of an
abstraction, refinement, or equivalence relative to a non empty set of questions
(properties) P .

– In case of an equivalence, we require that for all p ∈ P holds: M1 |= p ⇐⇒
M2 |= p. We write M1 =P M2.

– If M1 is an abstraction of M2 with respect to P it holds for all p ∈ P holds:
M1 |= p ⇒ M2 |= p. We write M1 �P M2.

– We further say that M1 is a refinement of M2 iff M1 is an abstraction of M2.
We write M1 �P M2.

We also have a second case of abstraction and refinement when only comparing
the scope given by the set of questions (properties) considered in two models M1

and M2:

– We have an equivalent scope if I(M1) = I(M2). We write M1 =I M2.
– We have a more abstract scope if I(M1) ⊆ I(M2). We write M1 �I M2.
– We further say that M1 has a refined scope of M2 iff M1 has an abstracted

scope of M2. We write M1 �I M2.

The group then employed this definition to describe the role of abstraction
and refinement for some general development steps:

In case of a analysis model, a more abstract model Ma is derived from the
concrete model M in order to prove or disprove that a certain set of properties
P holds. If the abstract model provides all required information concerning P
(I(Ma) ⊇ P) we can distinguish the case that (1) both models are equivalent
(Ma =P M) or Ma is an abstraction of M (Ma �P M):

(1) ∀p ∈ P : Ma |= p ⇐⇒ M |= p (2) ∀p ∈ P : Ma |= p ⇒ M |= p.

These facts can be used to transfer the fulfilment of p from Ma to M . Note that
usually the verification or analysis of p is only feasible for Ma. The equivalence
or abstraction between the models is then used to propagate the result for p.
While in case of equivalence the full result can be propagated, for abstraction
the check Ma |= p is only sufficient to conclude M |= p. The propagation is not
valid for ¬p as there is Ma |= ¬p is not necessary for M |= ¬p.

www.manaraa.com

260 H. Giese, T. Levendovszky, and H. Vangheluwe

A typical development step in computer science is model refinement : A re-
fined model M2 is derived from the abstract model M1 by adding details to the
model. The considered set of properties P can be either fixed or extended in the
refinement step (I(M2) ⊇ I(M1) = P). Due to the definition of refinement for
M2 �P M1 holds: ∀p ∈ P : M1 |= p ⇒ M2 |= p.

During the development the check M1 |= p is then used to determine that any
refinement step preserves this property. Thus, we can characterize the strategy as
a pessimistic risk elimination step which excludes solutions if it is not guaranteed
that for all its valid implementations (refinements) also p must hold.

While refinement is common in computer science, in engineering and related
disciplines the typical development step is approximation which is rather differ-
ent. Approximation can be seen as refinement with respect to negated properties:
∀¬p ∈ P : M1 |= ¬p ⇒ M2 |= ¬p.1 This effectively means that approximation is
an optimistic approach which only eliminates impossible solutions. If a property
p has already been falsified for M1 (N1 |= ¬p), we refuse all solution M2 which
cannot fulfill p.

4.3 Model Evolution

One of the main problems for a wide scale acceptance of model engineering prac-
tices in industry is the lack or the immaturity of methods and tools that allow
to confidently switch to a fully model driven software development process. In
conventional software development, for instance, source code versioning systems
are commonplace, whereas it is still largely unclear of how adequate versioning
should be applied in a model driven context.

Another pressing problem that was the topic of group discussion is the evo-
lution of metamodels representing the abstract syntax of modeling languages.
Such an evolution would alter the metamodel and therefore possibly render all
models conforming to the original metamodel obsolete.

Hence, support for migrating models from the original to the changed meta-
models ought to be provided. Ideally, this would come in the form of transfor-
mations that could migrate models towards newer versions of metamodels. Such
transformations could possibly be derived automatically.

It is still an open question how the actual evolution of metamodels could be
carried out. Perhaps it is feasible to find certain recurring “evolution patterns”
similar to refactoring operations, which would ease the derivation of migrating
transformations. A second possibility would be to allow “free-hand editing” of
metamodels, in which case tool support should allow to at least partially load
models into newer versions of metamodels and - for further manual editing -
provide a comprehensive list of model elements that do not match the new
metamodel. In both cases, it is advisable to store traceability information, for
instance to be able to provide backwards compatibility.

1 In practice, M1 is usually an idealization w,r,t. p where an approximation is only
extremely likely.

www.manaraa.com

Summary of the Workshop on Multi-Paradigm Modeling 261

Apart from discussing these more technical challenges that call for tool sup-
port, the discussion elaborated on what kinds of metamodel evolution there are,
and what the needs for evolution might be.

We could identify two basic kinds of evolutions. The first would be a purely
syntactic evolution, which would result in adding “syntactic sugar” to the meta-
model, for purposes of making the modeling language more convenient to use and
comprehend. One example would be to introduce model elements, that repre-
sent structures built of more basic model elements. As an example, the Business
Process Execution Language (BPEL) offers convenient constructs such as Flow
or Sequence, which could alternatively be modeled by linking up activities ac-
cordingly on a fine-grained level. Models expressed in either way, however, have
the same semantics.

The second kind of evolution would be semantic evolution, where the seman-
tics of the model elements are changed or new elements are introduced whose
semantics have to be determined. This can take place through changing a meta-
model and according to that changing its semantic mapping towards a semantic
domain. An explicit mapping towards a semantic domain, however, does often
not exist, but a code generator or interpreter is employed to make models ex-
ecutable. Changes to the generator would represent a change in the semantics
of the language. Essentially this poses a challenge for appropriate configuration
management to bind metamodels, models and their respective generators.

The purpose of such syntactic evolution could be to enhance the learnability or
usability of a modeling language, whereas semantic evolution would go towards
enhancing the appropriateness and expressivity of a modeling language.

The discussion concluded with the understanding that metamodel evolution
should not simply be about providing means to arbitrarily alter metamodels,
but be a way to continuously maintain the quality of metamodels by ensuring
their fitness for task.

This would possibly require metrics for measuring the quality of metamodels
and the appropriateness of the expressivity or usability of the respective mod-
eling languages. Such metrics would indicate when a modeling language ought
to actually undergo evolution, to avoid “uncontrolled” modifications that may
introduce ambiguities or distort the understandability and hence the practical
applicability of a modeling language.

5 Program Committee

Michael von der Beeck BMW (DE)
Jean Bézivin Université de Nantes (FR)
Heiko Dörr DaimlerChrysler AG (DE)
Jean-Marie Favre

Institut d’Informatique et Mathématiques Appliquées de Grenoble (FR)
Reiko Heckel University of Leicester (UK)
Jozef Hooman University of Nijmwegen (NL)
Gabor Karsai Vanderbilt University (US)

www.manaraa.com

262 H. Giese, T. Levendovszky, and H. Vangheluwe

Anneke Kleppe University of Twente (NL)
Ingolf H. Krüger University of California, San Diego (US)
Thomas Kühne Technical University Darmstadt (DE)
Juan de Lara Universidad Autónoma de Madrid (ES)
Jie Liu Microsoft Research (US)
Mark Minas University of the Federal Armed Forces (DE)
Oliver Niggemann dSPACE GmbH (DE)
Pieter Mosterman The MathWorks (US)
Bernhard Schätz TU Munich (DE)
Andy Schürr Technical University Darmstadt (DE)
Hans Vangheluwe McGill University (CA)
Bernhard Westfechtel University of Bayreuth (DE)

References

1. Harel, D., Rumpe, B.: Modeling languages: Syntax, semantics and all that stuff,
part i: The basic stuff. Technical report, Jerusalem, Israel (2000)

2. Costagliola, G., Lucia, A.D., Orefice, S., Polese, G.: A classification framework to
support the design of visual languages. J. Vis. Lang. Comput. 13 (2002) 573–600

3. Henkler, S., Hirsch, M.: A multi-paradigm modeling approach for reconfigurable
mechatronic systems. Technical report, Budapest University of Technology and
Economics, Dept. of Automation and Applied Informatics, Genova, Italy (2006)

4. Saeki, M., Kaiya, H.: Constructing multi-paradigm modeling methods based on
method assembly. Technical report, Budapest University of Technology and Eco-
nomics, Dept. of Automation and Applied Informatics, Genova, Italy (2006)

5. Denckla, B., Mosterman, P.J.: Block diagrams as a syntactic extension to haskell.
Technical report, Budapest University of Technology and Economics, Dept. of Au-
tomation and Applied Informatics, Genova, Italy (2006)

6. Streb, J., Alexander, P.: Using a lattice of coalgebras for heterogeneous model
composition. Technical report, Budapest University of Technology and Economics,
Dept. of Automation and Applied Informatics, Genova, Italy (2006)

7. Braatz, B.: An integration concept for complex modelling techniques. Technical
report, Budapest University of Technology and Economics, Dept. of Automation
and Applied Informatics, Genova, Italy (2006)

8. Reiter, T., Kepler, J., Retschitzegger, W., Altmanninger, K.: Think global, act lo-
cal: Implementing model management with domain-specific integration languages.
In: Lecture Notes in Computer Science, Satellite Events at the MoDELS 2006 Con-
ference, Genova, Italy (2006)

www.manaraa.com

Think Global, Act Local:
Implementing Model Management with
Domain-Specific Integration Languages�

Thomas Reiter1, Kerstin Altmanninger2, and Werner Retschitzegger1

1 Information Systems Group (IFS)
Johannes Kepler University Linz, Austria
{reiter,werner}@ifs.uni-linz.ac.at
2 Department of Telecooperation (TK)

Johannes Kepler University Linz, Austria
kerstin.altmanninger@jku.at

Abstract. In recent years a number of model transformation languages
have emerged that deal with fine-grained, local transformation specifica-
tions, commonly known as programming in the small [13]. To be able to
develop complex transformation systems in a scalable way, mechanisms
to work directly on the global model level are desirable, referred to as
programming in the large [26]. In this paper we show how domain specific
model integration languages can be defined, and how they can be com-
posed in order to achieve complex model management tasks. Thereby,
we base our approach on the definition of declarative model integration
languages, of which implementing transformations are derived. We give
a categorization of these transformations and rely on an object-oriented
mechanism to realize complex model management tasks.

1 Introduction

Model-driven development (MDD) in general aims at raising the productivity
and quality of software development by automatically deriving code artifacts
from models. Even though an immediate model-to-code mechanism can yield
tremendous benefits, it is commonly accepted that working model-to-model
mechanisms are necessary [23] to achieve integration among multiple models
describing a system and to make models first-class-citizens in MDD.

In recent years, therefore, a number of model transformation languages
(MTLs) have emerged, which allow to specify transformations between meta-
models. Such transformations are defined on a fine-grained, local level, upon
elements of these metamodels. Albeit the advantages that MTLs bring in terms
of manipulating models, it is quite clear that defining model transformations
on a local level, only, can pose substantial scalability problems. Similarly, [9]

� This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-810806.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 263–276, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

264 T. Reiter, K. Altmanninger, and W. Retschitzegger

emphasizes the need for establishing relationships between macroscopic entities
like models and metamodels, for instance for the coordination of various domain-
specific languages.

There are already first approaches trying to alleviate the above mentioned
problem from two different angles (cf. also Section 5). The first category ad-
heres to a bottom-up approach, meaning that existing general purpose MTLs are
extended for special tasks like model merging [14] or model comparison [21]. Fur-
thermore, mappings carrying special semantics can be established between meta-
models and further on be derived into executable model transformations [6].

The second category of approaches is top-down-oriented and falls into the
area of model management, where relationships between models are expressed
on a coarse-grained, global level through generic model management operators.
The aim of model management is to ease the development of metadata inten-
sive applications, by factoring out common tasks in various application scenarios
and by providing generic model management operators for these tasks. The op-
erators’ generality allows to make assumptions about, e.g., algebraic properties
of model management operations, but does not necessarily make any specific
assumptions about the operators’ actual implementations. For instance, Rondo
[5] is an implementation of such a system, oriented towards managing relational
and XML schemata.

It is our opinion that both, bottom-up and top-down approaches are valuable
contributions and should be considered as potentially complementing each other,
as opposed to be thought of as two sides of a coin. One of model management’s
main contributions is to provide a conceptually well-founded framework guiding
the actual implementation of model management operators, for which the capa-
bilities of increasingly more powerful MTLs can be leveraged.

Therefore, this paper represents early work in drafting an approach that tries
to build on the strengths of both paradigms. On the one hand, the model manage-
ment rationale to make models first-class-citizens and to achieve complex model
management tasks by assembling global operations on models, is followed. On
the other hand, our approach relies on domain-specific languages (DSLs) devel-
oped atop general-purpose MTLs for locally handling fine-grained relationships
between metamodels.

The proposed approach resides in the context of the ModelCVS [18][17] tool
integration project, which aims at integrating various modeling tools via meta-
models representing their modeling language. Concretely, the problems that need
to be solved are finding efficient ways to integrate various metamodels on a local
level, and solve common problems, for example metamodel evolution, on a global
level.

The remainder of this paper is structured as follows. Section 2 discusses the
rationale behind our approach. Section 3 deals with the composition of model
management operators and classifies different kinds of transformations. Section 4
goes into detail about how domain specific integration languages can be defined.
Section 5 discusses related work and Section 6 summarizes our approach.

www.manaraa.com

Think Global, Act Local: Implementing Model Management 265

2 Rationale for Our Approach

To better motivate the rationale underlying our approach, this section starts
with an analogy referring to the definition of primitive recursive functions. Ta-
ble 1 shows the various abstraction layers our approach is built on and introduces
terms and concepts used throughout this paper. Referring to computability the-
ory, using only the constant, successor, and projection functions, all primitive
recursive functions, such as addition or subtraction operators, can be defined.
Analogous to that, on top of existing model transformation languages residing
on the local level, we define integration operators on the local composite level for
handling fine-grained relationships between model elements. Algebraic as well as
integration operators are then bundled up into sets representing algebras or in-
tegration languages, respectively. We refer to this level as intermediate, because
the elements of algebras and integration languages act upon the local level, but
are used to define transformations acting upon the global level. Hence, on the
global level, complex functions and concrete realizations of model management
operators are found. These algebras and languages are at a suitable level of ab-
straction and are commonly used to assemble algebraic terms or model manage-
ment scripts [4]. After establishing a view across the abstraction layers, ranging
from bottom-level MTLs to top-level model management scripts, we illustrate
our approach in a top-down fashion in more detail.

Table 1. Analogy referring to the definition of primitive recursive functions

Level Natural Numbers Example Proposed Approach Example
Global Composite Terms power2(max(x,y)) Model Mgmt. Scripts m’’=translate(m.merge(m’))
Global Complex Functions power2(z),max(x,y) Model Mgmt. Operators Translation,PackageMerge
Intermediate Algebras {+,-,N},{*,/,N} Integration Languages FullEquivLang,MergeLang
Local Composite Operators +,-,* Integration Operators FullEquivClass,MergeClass
Local Base Functions succ(x),null() MTL Expressions ATLRule,OCLExpression

Global and Global Composite. As depicted in Figure 1, we believe it is
helpful to view the composition of complex model management operations as an
object-oriented (OO) meta-programming task [2], where models are understood
as objects and transformations as methods acting upon these “objects”. Con-
sequently, we think that an integral part of defining a metamodel should be to
specify integration behavior in the form of transformations (1) that are tied to
that metamodel (e.g., merging state-machines). The composition of transforma-
tions can then be facilitated by writing model management scripts in an OO-
style notation, which invokes transformations on models (2) just like methods
on objects. Transformations representing actual realizations of model manage-
ment operators are defined by languages (3) which we refer to as domain specific
integration languages (DSIL).

Intermediate. A DSIL consists of operators that enable to locally handle
fine-grained relationships between metamodels and is formalized as a weaving
metamodel [7]. The domain specificity of a DSIL stems from the fact that a DSIL

www.manaraa.com

266 T. Reiter, K. Altmanninger, and W. Retschitzegger

can only be applied to certain kinds of metamodels (4). For instance, a Merge-
Lang may be used to specify a merge for metamodels representing structures
(e.g., class diagrams). As behavioral integration poses a very different challenge
than structural integration [25], a merge on a metamodel representing some kind
of behavior (e.g., business process), would have to be specified in a FlowMerge-
Lang, whose operators are specifically aimed towards metamodels representing
flows [24]. Efforts to formalize a metamodel’s domain (e.g., by mapping meta-
models onto ontologies [19]), could help to check whether a metamodel falls into
the domain of a certain DSIL. From our point of view, this still poses an open
research question and the applicability of a DSIL on a metamodel ultimately
requires a user’s judgement.

Local and Local Composite. An integration specification in a DSIL is a
weaving model that conforms to its weaving metamodel, which is a certain DSIL’s
metamodel (5). A weaving consists of a set of typed links between elements of a
model or a metamodel. The types of links represent different kinds of integration
operators (6), whose execution semantics are defined through a mapping towards
an executable MTL. Thus, an integration specification is finally derived into an
executable model transformation (7).

MM3

MM2

MM1

MM1

MM6

MM4

MM5
MM2

MM7

MM3

MM3

1

2 3

4

Global Composite Global Intermediate Local Composite Local

1

2

MM2

MM1

MM1

MM3

M1

M3

Integration
Behavior

MM

MMMM

MMMM

MMMMMMMM

MM2

MM

MMMM

MMMM

MMMMMMMM

MM

MMMM

MMMM

MMMMMMMM

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (

label <- src.name,
pre <- src.incoming.source

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (

label <- src.name,
pre <- src.incoming.source

)
}

1

2 3

4

11

22 33

44

Fusion
Rewrite

Translation

M2

St
ru

ctu
re

In
te

gr
at

ion
 B

eh
av

ior DSIL

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}1

2

3

4

5

6

7

Fig. 1. Illustration of our approach’s abstraction layers

Notably, our approach focuses on specifying integration between metamodels
in a purely declarative way, as such a specification (which abstracts imperative
implementations) is the basis for reasoning tasks like analysis or optimization.

3 Managing Models on a Global Level

This section discusses the two top-most layers of abstraction which have been
previously introduced as global and global composite. The following subsection
exemplifies transformation composition on the global composite layer through
a model management script. Based on observations gained in the example, the
global level is elaborated on in more detail by laying out a useful classification
of transformations.

www.manaraa.com

Think Global, Act Local: Implementing Model Management 267

3.1 Model Manangement Scripts on the Global Composite Level

The following example deals with the merging of two domains represented
by two metamodels, as depicted in Fig. 2. When these metamodels are
merged, however, also their conforming models should be merged. We refer to
such a model management task as an exogenous merge. A concrete application
would be to merge previously modularized metamodels (e.g., a BPEL metamodel
split into a structural and a behavioral part) or to extend a metamodel with a
certain aspect (e.g., add “Marks” to a Petri-net metamodel) [20]. Throughout
the example, however, for simplicity reasons and to emphasize the global per-
spective at this abstraction layer we will not go into detail about the makeup of
the metamodels, which are simply referred to as A and B and their conforming
models as a and as b, respectively.

There may be multiple ways to describe an exogenous merge. A straightfor-
ward way would be to program the whole task as one monolithic transformation
in a general purpose transformation language. As already argued before, such
ad-hoc approaches suffer poor scalability and reuse potential. Instead, a de-
scription of such complex tasks as a composition of global model management
operations favors scalability and reuse: Firstly, one is not concerned with han-
dling fine-grained relationships on the local model element level, and secondly,
model management operations can be easily reused in order to assemble scripts
for different tasks. Thinking of model management scripts as OO programs, as
we propose to do, furthermore has the advantage that the code for this model
management script does not need to be changed in order to work with other
metamodels, as the actual transformations that are invoked, are dynamically
bound depending on a model’s metamodel.

Fig. 2 depicts the described setting and gives a listing of the according exoge-
nous merge model management script. Details of the various steps in that script
are discussed in the following.

A.mark();
B.mark();

Ecore AB = A.merge(B);

FullEquiv wa = AB.Fe_match(A);
FullEquiv wb = AB.Fe_match(B);

Transformation ta = wa.generate();
Transformation tb = wb.generate();

AB a = a.ta();
AB b = b.tb();

AB ab = a .merge(b);

11

2
3

4

5

6

A.mark();
B.mark();

Ecore AB = A.merge(B);

FullEquiv wa = AB.Fe_match(A);
FullEquiv wb = AB.Fe_match(B);

Transformation ta = wa.generate();
Transformation tb = wb.generate();

AB a = a.ta();
AB b = b.tb();

AB ab = a .merge(b);

11

22
33

44

55

66

mark
Ecore

A B

AB*

a b b

ab

A* B*

a

22
11 11merge

66
merge

FullEquiv

mark

33

44

5555

44

33
FullEquiv

“Exogenous Merge” Script

Fig. 2. Model management script for exogenous merge

www.manaraa.com

268 T. Reiter, K. Altmanninger, and W. Retschitzegger

In the first step (1) a mark transformation is run that tags all metamodel
elements with a unique id by adding annotations. In the second step (2) a merge
transformation is executed that unites the metamodels A and B as specified
in the merge integration specification, for instance through overlapping the two
metamodels on certain join points. This results in a new metamodel AB, which
also contains the initially introduced markings. In the third step (3) a transfor-
mation creates a weaving between each of the original A and B metamodels and
the newly created AB metamodel. A transformation creating such a weaving
does a relatively easy job, as it can rely on the previously introduced traceabil-
ity annotations to match model elements. The weavings created in our example
comprise a certain integration specification, which in step (4) is derived into
executable transformations, which are executed in (5) and migrate the models a
and b towards models a’ and b’ that conform to the AB metamodel. Since these
models now conform to the same metamodel, they can be overlapped in a merge
transformation (6). We would like to mention, that also other ways of realizing
traceability mechanisms exist, for instance through weaving a traceability aspect
into a base transformation in an aspect-oriented fashion [16]. Embedding trace-
ability information into a model through annotations, in our opinion has the
advantage that a transformation producing a weaving can relatively easy create
a trace weaving model. For further processing, the annotations could be easily
pruned from the model.

3.2 Categorizing Transformations on the Global Level

After having discussed the composition of global model management operations,
the following section will establish a better understanding of the transformations
that were used in the previous example. However, this will not be done by
discussing the behavior of these transformations in terms of how model elements
are manipulated, as this is transparent on the global level and would differ for
different kinds of metamodels. Rather, the global level requires to put thought
on what kinds of transformations are being employed.

Hence, we classify our approach’s DSILs used to define actual transformations,
into certain categories. These categories reflect recurring kinds of transforma-
tions prevalent in model engineering. Such a categorization favors the definition
of modular and comprehensible transformations and creates a mindset where
one can think of solving complex model management tasks through composi-
tion of such modular transformations, as exemplified in the previous subsection.
Another advantage of this approach is that for every category a generic toolset
can be built that allows to manipulate languages falling into a certain category.
Transformations producing weavings can all share a tool like the Atlas Model
Weaver [7], whereas translating transformations, for instance, can benefit from
tooling to capture execution traces.

A similar distinction is made in the area of generic model management [4].
However, we allow the distinction between different categories according to the

www.manaraa.com

Think Global, Act Local: Implementing Model Management 269

kind of input (IMM) and output metamodels (OMM) (cf. Table 2) that the
transformations act upon, as opposed to focus on making assumptions about
the behavior or algebraic properties of transformations.

Table 2 gives an overview by showing a category’s input/output charac-
teristics, example transformations, a reference to similar operators proposed
in literature, and a function signature being representative for a category’s
transformations. To put each of the example transformations in a concrete con-
text, we refer to the previously used traceability mechanism in more detail now.
First, the containsAnnotations transformation is called to check whether a model
is free of traceability annotations. If so, with addTraceAnnotations traceability
annotations are added to all model elements. Next, translateWithAnnotations
or mergeWithAnnotations is called that produces an output model in which
the traceability annotations are migrated from source to target model elements.
Then, matchByAnnotations is invoked which establishes a weaving model repre-
senting traceability links according to the annotations contained in source and
target model. In a final step, this traceability weaving is input to the createRe-
verseTranslation transformation which produces a round-tripping translation
transformation.

Table 2. Categories of transformations on the global level

Category Arity Output Function Signatur Example Operators in Lit.
Check 1 Prim. Type P p = check(M m); containsAnnotations Check-property [12]
Rewrite 1 OMM==IMM M m’ = rewrite(M m); addTraceAnnotations Refactorings [17]
Translation 1 OMM!=IMM Mb mb = translate(Ma ma); translateWithAnnotations ModelGen [3]
Fusion 2 OMM==IMM M m = fuse(M ma, M mb); mergeWithAnnotations Merge [12]
Relation 2 Weaving W w = relate(Ma ma, Mb mb); matchByAnnotations Match [3]
Generation 1 Transform. T t = generate(W w); createReverseTranslation GlueCodeGen [11]

Check. The first category deals with transformations that map models onto
primitive value ranges, like booleans or natural numbers. This kind of func-
tions allow to determine whether certain properties hold for models (consistency
checks), or to evaluate certain criteria (e.g., number of inheritance relationships)
of models.

Rewrite. This category encompasses transformations that modify a model but
do not transform it into a model of another metamodel. This kind of transfor-
mations can be associated with editing or specialized refactoring operations [17],
that do not require input from another model. An example language discussed
later on is a language that allows to mark elements in a model with certain
annotations.

Translation. A translating function maps concepts of one metamodel onto con-
cepts of another metamodel and henceforth transforms a model conforming to
one metamodel into a model conforming to another metamodel. A special case
of a translating transformation would be if the source and target metamodels
are the same, but nevertheless concepts are translated into other concepts. This
would especially be the case when using UML, which, by means of stereotypes
or tagged values offers a somewhat weaker mechanism than DSLs to represent

www.manaraa.com

270 T. Reiter, K. Altmanninger, and W. Retschitzegger

concepts. Still we consider such transformations as part of this class, as the same
translation language constructs can be of use, even though binding these needs
some special effort.

Fusion. We classify a transformation as a fusion, if it takes two models as input
and produces an output model taking into account each of the inputs. The input
and output models thereby conform to the same metamodel. For instance, this
class includes transformations that are usually associated with a merge or a
diff [12], although domain specific realizations may potentially blend these two
behaviors, by overlapping and clipping certain parts of the source models.

Relation. Transformations of this kind produce special kinds of models, which
relate two other models. These models are referred to as weaving models [7] and
consist of typed links between elements of left-hand side (LHS) and right-hand
side (RHS) models. An example for a transformation creating a weaving could
be carried out through a matcher, which heuristically establishes weaving links.
Therefore, the creation of a weaving is often a task involving manual effort.

Generation. This kind of transformations generates other transformations.
More precisely, they function as a compiler which turns weaving models into
executable transformations. Typically this is either accomplished through a
transformation whose target metamodel is the abstract syntax of a model trans-
formation language or through a templating mechanism. It is important to note,
that our view of a weaving is that a weaving model implicitly references its LHS
and its RHS model, hence we omit these models in the above signature. Thus,
we can still assume that the generation function has access to read the LHS and
RHS models.

4 Integrating Models on the Local Level

The previous section has detailed the global composite and the global level.
Hence, this subsection focuses on the remaining abstraction layers. As integra-
tion languages reside on the intermediate layer and this section makes use of a
concrete example DSIL, the first subsection is dedicated to the intermediate level
and to introducing the example language. The second subsection discusses the
local composite level and discusses integration operators for the example DSIL.
The local level is dealt with in the third subsection and focuses on the defini-
tion and extension of execution semantics for integration operators through a
mapping towards MTL code.

4.1 An Example DSIL on the Intermediate Level

The abstract syntax of a DSIL is defined in a weaving metamodel [7], which
is basically made up of meta-classes for the languages’ integration operators.
Furthermore, constraints are specified that enable to check whether a certain in-
tegration specification is valid. Such an analysis is comparable to static compile-
time checking in traditional programming languages. In the following we will

www.manaraa.com

Think Global, Act Local: Implementing Model Management 271

give an example for a basic language for the translation category. Due to space
limitations we will not go into detail about languages of other categories, just as
we are not claiming that the described integration operators are complete, as a
precise definition is out of scope of this paper.

The setting for our example is depicted in Fig. 3, which shows a simple meta-
model for activity diagrams (AD) as the LHS metamodel, and a Gantt-chart
project plan (PP) metamodel as the RHS metamodel. An activity diagram con-
sists of vertices and transitions in-between. A project consists of a number of
tasks and every task has a reference to its previous task.

The intention is to transform ADs into PPs in a semantics preserving way. In-
stead of programming the transformation directly, a DSIL is used to specify a
mapping that denotes the translation of concepts of the AD metamodel onto con-
cepts of the PP metamodel. The code snippet on the right side of Fig. 3 shows
the final transformation code that should be generated in an ATL-like1 notation.

subVertices transitions

tasks

preFullEquivAttr

FullEquivAttr

FullEquivRef

FullEquivClass
FullEquivClass

TransitionVertex
name

ActivityDiagram

description

outgoingtarget
incomingsource

Project
title

Task
label

FullEquivRefordered

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (
label <- src.name,
pre <- src.incoming.source

)
}

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (
label <- src.name,
pre <- src.incoming.source

)
}

Fig. 3. Example integration specification in the FullEquiv language

4.2 Integration Operators on the Local Composite Level

The DSIL used is the so called FullEquivalence language, which can be seen
as a basic language for the translation category. It consists of three operators,
namely FullEquivClass, FullEquivAttr, and FullEquivRef, which in a pair-wise
manner link classes, attributes, and references, respectively. During the defini-
tion of a DSIL, it is important to define how its operators relate to each other.
In our example, for instance, the FullEquivAttr and the FullEquivRef opera-
tors have to stand in the context of the FullEquivClass operator, as the assign-
ment of values and the setting of references needs to happen in the context
of the model elements which these attributes and references belong to. Such
a relationship is defined through containment in the metamodel of the FullE-
quivalence language by making the FullEquivAttr and theFullEquivRef operators
children of the FullEquivClass parent. Relationships not inferable from structure
(e.g., precedence rules) can be specified in a constraint language. An example for

1 For simplicity reasons code snippets use simplified ATL syntax.

www.manaraa.com

272 T. Reiter, K. Altmanninger, and W. Retschitzegger

a constraint that should be enforced is that an attribute in a target model ele-
ment cannot be referenced by more than one FullEquivAttr operator having the
same FullEquivClass parent, as this would lead to ambiguity concerning which
source attribute should be used to set the target attribute.

4.3 Mapping Integration Operators onto the Local Level

After describing the operators, in the following example it is shown how a gener-
ating function can derive an implementation in the form of MTL code. Further-
more, we will exemplify the extension of an existing operator’s semantics. The
execution semantics are expressed through a function, mapping integration spec-
ifications expressed as weaving models onto executable transformations. This is
either achieved through a template producing MTL code, or through a trans-
formation creating a transformation program encoded as a model (higher-order
transformation). However, writing transformations that produce transformation
programs can be a daunting task. Thus, for better understandability, our expla-
nation uses an example template language, which allows to see the output in
bits of concrete syntax more intuitively.

Depending on what kind of transformation engine is used, the semantics of the
resulting transformations are for instance formalized as abstract state machines
[15] or as graph-based formalisms, such as triple-graph-grammars [22].

Continuing the above example, the subsequent paragraphs concentrate on the
execution semantics for each of the operators given in Fig. 3, by using ATL-like
code templates. At compile-time, each operator is derived into a fragment of
ATL-code, only. A weaving in a certain language, though, stands for a com-
plete ATL transformation. The generator, therefore, needs to integrate all these
fragments into a complete ATL transformation as shown in Fig. 3.

Fig. 4 depicts pseudo-template code to show how semantics of operators can
be specified. The template code consists of target code (ATL) in plain text, and
template code in angle brackets which is bound at compile-time against LHS
and RHS model elements. Square brackets contain control-flow instructions for
the generator. In the template body of the parenting FullEquivClass operator
for instance, templates of children operators are invoked.

template FullEquivClass {
rule <smodel>2<tmodel> {
from
<sname>:<smodel>!<sclass>
[extensionpoint: precondition,
requiredType: BooleanExpression]

to
<tname>:<tmodel>!<tclass> (
[applyTemplates(this.children)]

)
}

template FullEquivClass {
rule <smodel>2<tmodel> {
from
<sname>:<smodel>!<sclass>
[extensionpoint: precondition,
requiredType: BooleanExpression]

to
<tname>:<tmodel>!<tclass> (
[applyTemplates(this.children)]

)
}

template FullEquivAttr {
<tattr> <- <sname>.<sattr>
}

template FullEquivAttr {
<tattr> <- <sname>.<sattr>
}

template FullEquivRef {
<tref> <- <sname>.<sref>
}

template FullEquivRef {
<tref> <- <sname>.<sref>
}

template CondEquivClass extends FullEquivClass{
[extension FullEquivClass::precondition] {
([applyTemplates(this.condition)])

}
}

template CondEquivClass extends FullEquivClass{
[extension FullEquivClass::precondition] {
([applyTemplates(this.condition)])

}
}

Fig. 4. Template code for integration operators

www.manaraa.com

Think Global, Act Local: Implementing Model Management 273

To enable the extension of existing operators, a plugin-mechanism can be
used. Thereby, templates can offer extension-points, into which templates of
more specialized operators can plug-in their contributions. In Fig. 4, the FullE-
quivClass template declares an extension point that requires the contribution
of a boolean expression. An example for an extension is given by the template
of the CondEquivClass operator, which itself invokes a template that returns a
boolean expression bound to the operator’s context. Through this inheritance-
based reuse, a CondEquivClass operator can inherit all of FullEquivClass’ be-
havior and additionally denote that a model element should be transformed if a
certain condition holds, only.

5 Related Work

In this paper we have laid out an approach stretching across various abstraction
layers, from global model management to local MTLs. As shown in Table 3,
existing work typically focuses on certain abstraction levels, but, in our opin-
ion, have not established a common understanding of how bottom-up approaches
can be utilized for the implementation of top-down approaches in a scalable way.
Furthermore, we compare related works on basis of certain key characteristics
of our approach, like the employment of DSILs, OO-style model management
scripts, the extensibility of operators and the explicit use of declarative integra-
tion specifications.

Table 3. Comparison of related work

Related Key Characteristics Abstraction Levels
Work DSIL OO Extensible Declarative Glob. Comp. Glob. Intermed. Loc. Comp. Loc.

MMgmt. - - - + + + - - -
MOMENT - - ∼ + - + - - +
GGT + - - + - + + + ∼
AMW + - + + - - + ∼ -
EOL + - + ∼ - - + + +
ATL - - - ∼ - - - - +

Model management as proposed by Bernstein et al. aims at applying operators on
the model level [3] [12]. In [4] a language-independent semantics is established
to guide the implementation of model management operators. Although our
work embraces the ideas of model management operators, e.g., by categorizing
transformations, we also extend the notion of model management scripts with
OO-mechanisms and explicitly focus on providing for scalable implementations
through DSILs.

MOMENT [10] realizes model management operators by defining their se-
mantics in QVT relations [23] that are mapped onto the algebraic specification
language Maude, which, through term rewriting, executes the defined transfor-
mations. Although we focus on supporting the implementation of model man-
agement operators, the justified intention behind MOMENT to study formal
properties of transformations could complement our approach in the future.

www.manaraa.com

274 T. Reiter, K. Altmanninger, and W. Retschitzegger

However, our approach could potentially do this on the more abstract level
of basically language independent integration operators and DSILs, as opposed
to MOMENT, where Maude doubles as an execution environment as well as a
testbed for proving formal properties.

The Glue Generator Tool (GGT) [8] aims at the reuse of existing MDA ap-
plications by specifying composition relationships between platform-independent
models (PIMs), of which glue code for the integration of platform-specific models
(PSMs) can be derived. Although rules similar to our integration operators are
offered, our approach seems to be more flexible as we allow to extend the seman-
tics of integration operators. Furthermore, the integration scenario described in
GGT could be realized as a model management script carrying out the necessary
transformations, which could allow for better modularity and maintainability of
the overall approach.

The Atlas Model Weaver (AMW) [7] is a generic, extensible tool that aims at
supporting modelers to establish semantic links between elements of arbitrary
models or metamodels. The links are referred to as weavings and are formalized
in a weaving metamodel, which can be extended to denote link types with special
semantics. This extension mechanism is the basis for defining the syntax of
integration operators and DSILs in our approach. Created weavings can then be
subject to further processing like derivation of MTL code.

The Epsilon Object Language (EOL) is a language for managing models of
arbitrary metamodels [21]. It can either be used as a standalone language for
model navigation and comparison, or also as an infrastructure on which task-
specific languages such as the Epsilon Merging Language (EML) or the Epsilon
Comparison Language (ECL) can be built. Similarly, the Atlas Transformation
Language (ATL) [1] is a hybrid (imperative/declarative) MTL based on the
Eclipse Modeling Framework. In our opinion, both efforts present themselves
as possible execution environments for our approach. Especially the definition
of execution semantics for DSILs falling into categories like Check or Fusion
could be conveniently accomplished relying on the expressiveness of languages
like ECL or EML.

6 Conclusion and Future Work

In this paper we have proposed a conceptual approach which allows to define
declarative model integration languages to implement model management op-
erators, and to compose these into model management scripts. The distinction
between local and global transformations fosters reuse of existing integration
operators, and allows for sound composition of transformation functions. We
have given a description of transformation categories and exemplified the
composition of transformations into model management scripts. According to
the understanding of transformations defining the integration behavior of meta-
models, these scripts rely on an OO mechanism to invoke transformations which

www.manaraa.com

Think Global, Act Local: Implementing Model Management 275

are dynamically bound depending on a metamodel’s type. Furthermore, we dis-
cussed the syntax and the semantics of an example integration language and
described a way to extend integration operators.

We think of the approach described in this paper as a step towards the realiza-
tion of future transformation systems which operate on the global model level, as
opposed to the local model-element level, only. To raise the level of abstraction,
domain specific languages in the form of declarative integration specifications
play a key part in our approach. These are built on existing general-purpose
transformation languages and are basically technology neutral. We have experi-
mented with the implementation of various weaving languages which consist of
operators that form the language kernels for the proposed transformation cate-
gories. Current work deals with building a technical framework based on exist-
ing model engineering infrastructure supporting our approach and a generically
reusable toolset for various transformation categories.

In the context of ModelCVS, besides the integration of modeling tools, a
crucial issue is the support for language evolution through metamodel modifi-
cation. Future work will investigate to what extent such metamodel extensions
can have characteristics analogous to traditional OO sub-classing, which would
allow transformations to be inherited towards extended versions of metamodels.

References

1. ATL Homepage, http://www.eclipse.org/gmt/atl/, 2006.
2. Batory, D., Multilevel models in model-driven engineering, product lines, and

metaprogramming. IBM Systems Journal, VOL 45, NO 3, 2006.
3. Bernstein, P.A., Applying Model Management to Classical Meta Data Problems.

In Proceedings of the Conference on Innovative Data Systems Research (CIDR),
Asilomar, California, January 2003.

4. Bernstein, P.A., A.Y. Halevy, S. Melnik, and E. Rahm, A Semantics for Model
Management Operators. Microsoft Technical Report, June 2004.

5. Bernstein, P.A., S. Melnik, and E. Rahm, Rondo: A Programming Platform for
Generic Model Management. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Diego, California, USA, June 2003.

6. Bézivin et al., Combining Preoccupations with Models. 1st Workshop on Models
and Aspects - Handling Crosscutting Concerns in MDSD at the 19th ECOOP,
July 2005.

7. Bézivin, J., E. Breton, M. Didonet Del Fabro, G. Gueltas, and F. Jouault, AMW: A
Generic Model Weaver. In Proceedings of the 1ère Journée sur l’Ingénierie Dirigée
par les Modèles, Paris, France, 2005.

8. Bézivin, J., F. Jouault, D. Kolovos, I. Kurtev, and R.F. Paige, A Canonical Scheme
for Model Composition. A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006,
LNCS 4066, pp. 346–360, 2006.

9. Bézivin, J., F. Jouault, P. Rosenthal, and P. Valduriez, Modeling in the Large and
Modeling in the Small. LNCS, No. 3599, edited by Uwe Aßmann, Mehmet Aksit,
Arend Rensink. Springer-Verlag GmbH, pp. 33–46, 2005.

10. Boronat, A., J.Á. Carśı, and I. Ramos, Algebraic Specification of a Model Transfor-
mation Engine. European Joint Conferences on Theory and Practice of Softwaere
(ETAPS06), Vienna, March 2006.

www.manaraa.com

276 T. Reiter, K. Altmanninger, and W. Retschitzegger

11. Bouzitouna, S., M.P. Gervais, and X. Blanc, Models Reuse in MDA. In Proceedings
of the International Conference on Software Engineering Research and Practice
(SERP05), Las Vegas, USA, June 2005.

12. Brunet et al., A Manifesto for Model Merging. In Proceedings of the 1st Interna-
tional Workshop on Global Integrated Model Management (GaMMa2006), Shang-
hai, May 2006.

13. DeRemer, F., and H. Kron, Programming-in-the-Large Versus Programming-in-
the-Small. IEEE Trans. on Soft. Eng. 2(2), 1976.

14. Engel, K.-D., D.S. Kolovos, and R.F. Paige, Using a Model Merging Language for
Reconciling Model Versions. A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006,
LNCS 4066, pp. 143–157, 2006.

15. Gurevich, Y., P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State Machines:
Theory and Applications. LNCS VOL 1912, Springer-Verlag, 2000.

16. Jouault, F., Loosely Coupled Traceability for ATL. In Proceedings of the European
Conference on Model Driven Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany, 2005.

17. Kappel et al., Lifting Metamodels to Ontologies: A Step to the Semantic Integra-
tion of Modeling Languages. In Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS/UML), Genova,
Italy, October 2006.

18. Kappel et al., On Models and Ontologies - A Semantic Infrastructure Support-
ing Model Integration. In Proceedings of Modellierung, Innsbruck, Tirol, Austria,
March 2006.

19. Kappel et al., Towards A Semantic Infrastructure Supporting Model-based Tool
Integration. In Proc. of the 1st Int. Workshop on Global integrated Model Man-
agement (GaMMa2006), Shanghai, May 2006.

20. Kapsammer, E., T. Reiter, W. Retschitzegger, and W. Schwinger, Model Integra-
tion Through Mega Operations. In Proc. of the Int. Workshop on Model-driven
Web Engineering (MDWE), Sydney, July 2005.

21. Kolovos, D.S., R.F. Paige, and F.A.C. Polack, The Epsilon Object Language (EOL).
A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066, pp. 128–142,
2006.

22. Königs, A., and A. Schürr Specification of Graph Translators with Triple Graph
Grammars. In Proc. of Graph-Theoretic Concepts in Computer Science, 20th Int.
Workshop, Herrsching, Germany, 1994.

23. Object Management Group (OMG), MOF QVT Final Adopted Specification.
November 2005.

24. Reiter, T., W. Retschitzegger, W. Schwinger, and M. Stumptner, A Generator
Framework for Domain-Specific Model Transformation Languages. In Proceedings
of the 8th International Conference on Enterprise Information Systems (ICEIS),
Paphos, Cyprus, May 2006.

25. Stumptner, M., M. Schrefl, and G. Grossmann, On the Road to Behavior-Based
Integration. In Proceedings of Conceptual Modelling, First Asia-Pacific Conference
on Conceptual Modelling (APCCM2004), Dunedin, New Zealand, January 2004.

26. Wiederhold, G., P. Wegner, and S. Ceri, Toward megaprogramming. CACM, Vol-
ume 35, Issue 11, pp. 89–99, November 1992.

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, p. 277, 2007.
© Springer-Verlag Berlin Heidelberg 2007

MoDELS 2006 Doctoral Symposium

Gabriela Arévalo1 and Robert Pettit2

1 LIRMM – Université de Montpellier II, France
Gabriela.Arevalo@lirmm.fr

2 The Aerospace Corporation, USA
rob.pettit@aero.org

Doctoral Symposium Overview

The Doctoral Symposium at the MoDELS conference provided an international forum
for doctoral students to interact with other students and faculty mentors. The Doctoral
Symposium sought to bring together PhD Students working in areas related to
modeling and model-driven engineering. Selected students had the opportunity to
present and to discuss their research goals, methods and results within a constructive
and international atmosphere. The goal of the symposium was to provide useful
guidance for completion of the dissertation research and initiation of a research
career. The symposium was intended for students who have already settled on a
specific research proposal and have some preliminary results, but still had enough
time remaining before their final defense so that they could benefit from the
Symposium discussions. Fifteen PhD students from different countries submitted
papers to the symposium. Submissions were judged on originality, overall
contribution, technical merit, presentation quality and relevance to the conference
topics. Each submission was reviewed by one mentor from the senior program
committee. Of the fifteen PhD submissions, seven students were invited to present
their work at the symposium. To motivate the interaction between the participants,
each student that was invited to attend was assigned a specific mentor to be in charge
of leading the discussion after the student’s presentation, and a specific mini-mentor
(another PhD student) to contribute additional questions.

We would like to thank the members of the doctoral symposium panel for their
work in reviewing the students’ submissions, and for participating in the symposium
and providing feedback to the students. The panel members were Hassan Gomaa
(George Mason University), Jörg Kienzle (McGill University), Dorina Petriu (Carlton
University) and Claudia Pons (Universidad Nacional de La Plata).

Gabriela Arévalo

Robert Pettit
MoDELS 2006 Doctoral Symposium Co-Chairs

www.manaraa.com

Model Driven Security Engineering for the
Realization of Dynamic Security Requirements

in Collaborative Systems

Muhammad Alam

Research Group Quality Engineering – Institut für Informatik
University of Innsbruck, Austria
muhammad.alam@uibk.ac.at

Abstract. Service Oriented Architectures with underlying technologies
like web services and web services orchestration have opened the door
to a wide range of novel application scenarios, especially in the context
of inter-organizational cooperation. One of the remaining obstacles for a
wide-spread use of these techniques is security. Companies and organiza-
tions open their systems and core business processes to partners only if a
high level of trust can be guaranteed. The emergence of web services secu-
rity standards provides a valuable and effective paradigm for addressing
the security issues arising in the context of inter-organizational cooper-
ation. The low level of abstraction of these standards is, however, still
an unresolved issue which makes them inaccessible to the domain expert
and remains a major obstacle when aligning security objectives with the
customer needs. Their complexity makes implementation easily prone of
error. This paper provides a bird eye view of a doctoral work, where
an effort is made to develop a conceptual framework – called SECTET
in order to apply model driven security engineering techniques for the
realization of high-level security requirements.

1 Introduction

The emerging trend of globalization strongly characterizes the need for integra-
tion between business processes in order to attract broader audience to their
services. It is widely accepted that business processes are still not mature along
the path of having online integration. This can be attributed among other fac-
tors to the fact that a well defined trust management framework between the
online partners located across geographical boundaries does not exist. Existing
approaches for trust management are generally applicable to scenarios where the
data is stored in a centralized repository. However, for cross-business processes,
due to geographical and political reasons, a centralized repository is not always
a viable option. In such scenarios, due to privacy, security and management
reasons, every peer maintains its own set of data and has its own trust man-
agement requirements. Every peer has to comply with the trust management
requirements of other peers in an online business scenario. Further, the use of

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 278–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Model Driven Security Engineering 279

different proprietary standards at different partner’s sites for trust management
also hinders successful B2B integration.

Service Oriented Architectures (SOAs) with underlying technologies like web
services and web services orchestration have opened the door to a wide range
of novel application scenarios, especially in the context of inter-organizational
cooperation. By providing a solution to interoperability concerns, the advent
of web services standards [22] have paved the way for the integration of busi-
ness processes. Due to this flexibility, on the one hand, business partners having
common business goals can connect their enterprise applications regardless of
their platform or technology in use. On the other hand, this decentralized man-
agement has increased the exposure of enterprise applications and requires a
thorough investigation of their security implications. Access control and privacy
issues are always of major concern to distributed applications.

Applications built on web service technologies use plenty of standards like
WS-Trust for trust negotiation, WS-security for the fulfilment of security require-
ments like confidentiality and integrity and eXtensbile Access Control Mark-up
Language (XACML) for the specification of access policies to name a few. These
open standards enable the agreement and inter-operability at the technical level,
upon which different proprietary applications can be built. The low level of ab-
straction of these standards is, however, still an unresolved issue which makes
them inaccessible to the domain expert and remains a major obstacle when
aligning security objectives with the customer needs. Their complexity makes
implementation easily prone of error. Further, these web services security stan-
dards have a distinct inter-operability oriented focus – that is, these standards
abstract the heterogeneity of the underlying middleware platforms only rather
than the design intent – which is, to model high-level security concepts in ap-
plication domains. Enormous growth of these standards is also a vexing prob-
lem. The intricate inter-dependencies among these standards (e.g. dependencies
among XPath, XQuery and XACML etc) require a considerable amount of time
in mastering these standards which could be a daunting task. A pressing need
is therefore, to develop techniques that can abstract the complexities of the
underlying security architectures (based on web services security standards).

Moreover, in order to provide a satisfying alignment between the high-level
security concepts in application domains and its corresponding implementation,
all stakeholders involved in the realization of the distributed system – from the
domain experts to the software engineers – must have a common understanding
of the security requirements, each one at the appropriate level of abstraction.
This means that the security concepts should not be confined only either to
high-level descriptions or to low-level implementations. A very strong binding
between the high-level security models and the underlying implementation is
required and only abstraction techniques are not enough.

Over the years, an important goal of the software researchers is to develop
techniques to model domain concepts in terms of their design intent rather than
the underlying implementation environment. Effective complexity management
techniques play a significantly important role in the development of accurate, re-

www.manaraa.com

280 M. Alam

liable, and maintainable information systems which become increasingly larger,
complex and distributed in nature. In this context, Model-Driven Engineering
(MDE) is a promising approach 1) that treats models as an important artefact
during software development; 2) that precisely envisages the problem and the
solution domain at different level of abstractions and; 3) that defines method-
ologies for each level of abstraction and provides techniques to lower the level
of abstraction by defining relationships between the participating models. The
approach of MDE has two pillar aspects. The aspect Domain Specific Language
(DSL) helps to model concepts in specific application domains such as online e-
government, health-care services etc. Domain specific languages are formalized
using metamodels which are used to describe relationships among concepts in
a domain. The aspect Transformation Engine analyzes various aspects of the
models in the problem domain and then synthesizes implementation artefacts
from the models of the problem domain.

The software design framework from the OMG [13] – called Model Driven
Architecture [11] – is considered as an implementation of the MDE [18]. Using
the MDA framework, the software functionality is modelled with a standard
modelling language (UML) as a Platform Independent Model (PIM) and then
transformed to one or more Platform Specific Models (PSMs) or other PIMs. The
MDA paradigm considers models an essential part of the definition of the soft-
ware rather than a visual aid for understanding and communication. This makes
it the most appropriate solution to abstract the complexities of the underlying
platform while remaining expressive to model complex business scenarios.

We specialize the concept of MDE to Model-Driven Security Engineering
(MDSE) by providing a framework in which security concepts in an application
domain are modelled using UML and DSLs at the PIM abstraction level and
are merged with business requirement models. These security enhanced PIMs
are transformed to different open standard specifications (PSM) which in turn
configure our component based reference architecture [6].

The rest of the paper is organized as follows: section 2 presents the conceptual
foundations of our framework and the DSL in the context of a case study from
the health-care domain. Section 3 summarizes the related work and finally in
section 4 a conclusion is drawn with a focus on our contributions (section 4.1)
and future work (section 4.2).

2 MDE for the Realization of Dynamic Security
Requirements

The SECTET project cluster – a (model driven) security engineering framework
– facilitates the design and implementation of secure inter-organizational work-
flows. Based on the SOA paradigm, the objective of the SECTET-framework is
to design and implement inter-organizational workflows in a peer-to-peer envi-
ronment – i.e. without central control. Case studies from the domain of health-
care, e-government and education gave us the opportunity to the apply the
SECTET-framework in real life scenarios [8,15,5,16,7,4,1]. The framework weaves

www.manaraa.com

Model Driven Security Engineering 281

the ideas about MDA, MDE and web services standards together in to an inter-
organizational workflow conceptual framework that is more than the sum of its
parts.

The framework caters the needs of a broader domain termed as ”Security Crit-
ical Inter-organizational workflows Scenarios”. All component based application
domains are under the scope of SECTET-framework broader domain. We believe
that security concepts like authentication, authorization etc are fundamentally
same for different application domains [9]. For example, the fundamental concept
for authorization – called Role Based Access Control (RBAC) [17] is a general
security concept and has been specialized in different application contexts. Sim-
ilarly, SECTET represents a high-level repository of security concepts which are
realized in specific, component based application domains. In this sense, the
abstract languages defined within the SECTET-framework broader domain are
termed as DSLs. Security requirements such as workflow security requirements,
access control etc are modelled using DSLs at the design level and seamlessly
integrated as security patterns in the business requirements models.

The Trust Management module within the SECTET-framework – the focus
of my PhD thesis – deals with the realization of dynamic security requirements1.
The module is composed of four major components. The Analysis Component
employs the security use cases in order to capture dynamic security requirements.
The security usecases are supported by a catalogue of constraint patterns which
hosts a variety of positive and negative constraints patterns for dynamic security
requirements. The constraint vocabulary defined through the catalogue helps
to maintain a common understanding between all the stakeholders from the
domain experts to the software engineers involved in the realization of distributed
systems.

The objective of the Modelling Component within the Trust Management
module is to make a clear separation of concerns at each appropriate level of
abstraction and integrate them using appropriate modelling techniques. At the
PIM abstraction level, the component models domain concepts with a UML
profile called SECTET-UML. The profile is used to model business requirements
such as data type and static security requirements such as roles and their re-
spective hierarchies [17]. Within this classification schema, the Document Model
(describing the data type view for the documents travelling between the part-
ners and for the profiles of the users in the form of a UML class diagram) and
the Interface Model (describing the abstract set of UML operations that each
partner provides) are part of the business requirement models. The Role Model
(describing role and their hierarchies in the form of a UML class diagram) and
the Privacy, Rights Delegation and Access Model (describing conditions under
which a role from the Role Model is allowed to access a (web) service from the
Interface Model) are part of the access requirement models. In order to model

1 Security requirements like access control, privacy and delegation of rights that are
dependent on the calling subject profiles, accessed object attributes or current system
state.

www.manaraa.com

282 M. Alam

Fig. 1. Domain Model (Some Attributes are omitted for brevity)

dynamic security requirements, SECTET-UML is combined with a DSL – called
SECTET-PL.

SECTET-PL [19,5] – a predicative language in OCL-style [21] – is tightly inte-
grated with the UML – a de-facto standard for modelling. UML model property
check at the PIM abstract level is the guiding principle for the design of SECTET-
PL. Due to its restricted semantic scope, the generation of dynamic security
policies from the abstract SECTET-PL specifications is very intuitive. Using the
SECTET-PL predicates, positive and negative permissions can be specified with
respect to any UML class diagram. Due to this flexibility, the dynamic security
requirements specified via SECTET-PL can be transformed to any middle-ware,
object-oriented security platform. SECTET-PL has been successfully applied (with
some extensions) in multiple dynamic security requirement specification domains
such as attribute-based delegation of rights [3] and privacy-enhanced access
control [1].

The Modelling Component uses the MOF framework for the integration of busi-
ness requirements (Document and Interface Model) with access control require-
ments (Role andAccessModel) at themetalevel (cf. Fig 1).Themetamodel – called
Domain Model provides the integration between the business requirement models
and the access requirement models with a focus on resolving model dependencies
through proxy classes (such as ActrorAttributeRef, AssociationEndRef etc).

Figure 2a shows an instance of the Domain Model for an example dynamic
security requirement from the medical domain. According to this example (cf.
Fig 2b), ”A physician is only allowed to modify a medical record if he/she is a
primary care physician”. The subject.map function 1) abstracts the details of
the authentication 2) assigns a role to the calling subject based on his/her cre-
dentials and 3) maps it to an internal representation in the Document Model (cf.
Fig 2c – Physician). Figure 2 shows a simplified instance of the Domain Model
(cf. Fig 1). According to this model, the instance of the positive Permission
(isNegative=false) is associated with a SECTETPLExp and is assigned to the
instance of the RoleRef(PhysicianRole). The SECTETPLExp contains the ab-
stract syntax tree for the SECTET-PL constraint. In this way, the Domain Model
provides a common syntactical and semantic base for the SECTET-PL expressions.

www.manaraa.com

Model Driven Security Engineering 283

Fig. 2. A Simplified Instance of Domain Model

At the PSM abstraction level, the Modelling Component defines the domain
specific web service security standard metamodels. For instance, the domain
specific XACML [23] policy metamodel (cf. Fig 3) extends the general XACML
policy model with a RolePolicySet (RPS) and a PermissionPolicySet(PPS).
These policy sets define the structure that the XACML policies will have in our
domain.

The Transformation Component within the Trust Management module
incorporates two transformation patterns. The Model-To-Model (M2M) pattern
deals with the transformation of high-level access requirement models to low-
level XACML policy metamodel using the operational transformations of the
Query View Transformations (QVT) [14] – an MDA standard. The Model-To-
Code (M2C) pattern uses the XACML policy metamodel instances to generate
XACML policy files. In order to transform the SECTET-PL expressions associ-
ated with the permission object (cf. Fig 2), we use the black box operations.
According to QVT specification, black box operations can be considered as Java
Native Interface (JNI) methods and are used to allow the domain specific li-
braries/algorithms to calculate complex model property values from the source
model. The calculated values are then used to populate the target model ele-
ments. The black box operations can be coded in any programming language
with MOF bindings. In this way, the specification of complex domain specific
algorithms (such as syntax and semantic analysis of SECTET-PL expressions in
our case) in their optimal languages can be done rather than in QVT trans-
formation languages which are too general and therefore not best suited for
coding these algorithms. Consequently, the complexity and length of the QVT
scripts is reduced significantly and makes the implementation of some parts of
the transformation opaque.

In the current project state, we use the Eclipse Modelling Framework (EMF)
to generate domain specific instance models of the XACML metamodel. The
XACML metamodel is drawn using Rational Rose and imported into the EMF.
The imported metamodel is then populated with domain specific values and

www.manaraa.com

284 M. Alam

Fig. 3. XACML metamodel

transformed to XACML policy files using the OpenArchitectureWare’s XPAND
template language. For more information on how it is done, please refer to [12].

The Reference Architecture component within the Trust Management
module – a web services enabled runtime environment realizes the security arte-
facts generated from the M2C transformations. The Reference Architecture im-
plemented as XACML dataflow model provides the backbone and the enabling
technology for the artefacts defined at the model-level.

3 Related Work

Compared to other approaches that support a policy language for the specifi-
cation of dynamic constraints, our primary goals are different from the existing
approaches in that we intend to apply model-driven engineering techniques to
advance aspects of access control. To the best of our knowledge, this is the
first approach for model-to-model transformation of high-level access models to
low-level web services models.

[10] presents an approach for the application of pattern-based software de-
velopment to recurring problems in the domain of security. The basic idea of
the approach is to capture expert-knowledge in the security domain and make
it available to developers as a security pattern during software development.

www.manaraa.com

Model Driven Security Engineering 285

The approach provides an in-depth view of security patterns, its development
through an ontology based knowledge base and sorting out relationships be-
tween different existing security patterns. Although the author uses patterns
to systematically capture knowledge about security issues at the model level,
the semantics remain close to the technical level. The author does not address
transformation in any way. The author in [2] has presented a verification frame-
work for UML models enriched with security properties through a UML profile
called UMLSec. The framework stores UMLSec models using XMI files format
in a Meta Data Repository (MDR) which is then queried using Java Metadata
Interfaces (JMI) by different analyzers. These analyzers perform static as well
dynamic analysis on the UMLSec models for different security properties like
confidentiality, integrity etc. Compared to these approaches, our framework is
more domain specific and focused on the automatic generation of (standard)
security artefacts specified during the early phases of software development.
Further our objective is to develop high-level abstract languages through which
executable security requirements of a distributed system can be specified at a
higher level of abstraction. [20] proposes a UML based notation for access con-
trol using RBAC and provides code generation exclusively for object oriented
platforms (J2EE or .NET). Our approach has the advantage that it can be used
in any environment and also by using web services standards in our case, policy
exchange and management across domain boundaries will be easier.

4 Conclusions

In this paper, we presented an overview of a doctoral work where an effort
is made to develop a conceptual model driven security engineering framework
for the realization of high-level dynamic security requirements. The framework –
called SECTET particularly focus on the alignment of high-level security objectives
of business services with the underlying implementation in the form of Privacy
Security Trust (PST) technologies.

4.1 Contributions

In summary, our contributions include (1) focusing on the security concepts in
a domain at the PIM abstraction level and making a clear separation between
the security models and the underlying security architectures; (2) providing an
abstract representation of the underlying security artefacts responsible for the
configuration of security components rather than relying on direct code gener-
ation; (3) resolving model dependencies while integrating security models with
the business requirement models not only at the model and application level but
at the metamodel level as well and; (4) providing explicit high-level transforma-
tions for the platform independent DSL and its supporting models to platform
specific security models.

www.manaraa.com

286 M. Alam

4.2 Future Work

Currently, we are working along two lines. We are pushing an implementation of
a model transformation engine based on MOF-QVT with the EMF for research
purposes and extending our tool support [5,19] to perform visible QVT trans-
formations. Secondly, we are extending SECTET-PL for the specification of rights
delegation, obligation, information filtering and separation of duty constraints.

References

1. M. Alam, M. Hafner, and R. Breu. Modeling Authorization in a SOA based Ap-
plication Scenario. IASTED Software Engineering 2006, ISBN: 0-88986-572-8.

2. J. Jürjens. Secure Systems Development with UML. ISBN: 3540007016.
3. M. Alam et al. A Framework for Modeling Restricted Delegation in Service Ori-

ented Architecture. To Appear in TrustBus 2006.
4. M. Alam et al. Model Driven Security for Web Services (MDS4WS). INMIC

2004,Digi Obj Id 10.1109/INMIC.2004.1492930.
5. M. Alam et al. Modeling Permissions in a (U/X)ML World. IEEE ARES 2006,

ISBN: 0-7695-2567-9.
6. M. Hafner et al. A Security Architecture For Inter-organizational Workflows-

Putting WS Security Standards Together. ICEIS 2005, ISBN: 972-8865-19-8.
7. M. Hafner et al. Modeling Inter-organizational Workflow Security in a Peer-to-Peer

Environment. IEEE ICWS 2005,ISBN: 0-7695-2409-5.
8. M. Hafner et al. SECTET An Extensible Framework for the Realization of Secure

Inter-Organizational Workflows. Accepted for ICEIS 2006.
9. M. Hafner, M. Alam, R. Breu. A MOF/QVT-based Domain Architecture for Model

Driven Security . To Appear in IEEE/ACM Models 2006.
10. M. Schumacher. Security Engineering with Patterns. LNCS 2754 ISBN: 3-540-

40731-6, 2003.
11. Model Driven Architecture. http://www.omg.org/mda.
12. OAW For EMF Example available at. http://www.eclipse.org/gmt/oaw/doc/

30 emfExample.pdf .
13. Object Management Group. http://www.omg.org.
14. Query View Transformation: OMG Adapted Specification available at.

http://www.omg.org/docs/ptc/05-11-01.pdf.
15. R. Breu et al. Model Driven Security for Inter-Organizational Workflows in e-

Government. TCGOV 2005, Proceedings. ISBN 3-540-25016-6.
16. R. Breu et al. Web service engineering - advancing a new software engineering

discipline. ICWE 2005, LNCS 3579.
17. Role Based Access Control avialable at. http://csrc.nist.gov/rbac/.
18. S. Brahe and K. Osterbye. Business Process Modeling: Defining Domain Specific

Modeling Languages by Use of UML Profiles. ECMDA-FA 2006, LNCS 4066,
pp.241-255, 2006.

19. SECTETPL : A Predicative Language for the Specification of Ac-
cess Rights available at. http://qe-informatik.uibk.ac.at/∼muhammad/
TechnicalReportSECTETPL.pdf.

www.manaraa.com

Model Driven Security Engineering 287

20. T. Lodderstedt, D. Basin and J. Doser. A UML Based Modeling Language for
Model-Driven Security . 5th international conference UML 2002 Dresden, Ger-
many, 2002.

21. UML 2.0 OCL Specification available at. http://www.omg.org/docs/ptc/03-10-
14.pdf.

22. Web service security specifications, available at. http://www.oasis-
open.org/specs/index.php.

23. XACML 2.0 Specification Set. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=xacml.

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 288 – 290, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Educators’ Symposium at MoDELS 2006

Ludwik Kuzniarz

Department of Software Engineering and Computer Science,
Blekinge University of Technology, Ronneby, Sweden

Ludwik.Kuzniarz@bth.se

Overview

Model-driven development approaches and technologies for software-based systems,
in which development is centered round the manipulation of models, raise the level of
abstraction and thus, improve our abilities to develop complex systems. Therefore, a
number of approaches and tools have been proposed for the model-driven
development (MDD) of software-based systems..

Putting the model-driven development vision into practice requires not only
sophisticated modeling approaches and tools, but also considerable training and
education efforts. To make people ready for model-driven development, its principles
and applications need to be taught to practitioners in industry, incorporated in
university curricula, and probably even introduced in schools.

Industry is striving to improve their practice of software development by adopting
MDD. The adoption, nevertheless, is determined by the availability of skilled
software engineers who have been educated and trained in modeling and model-
driven development. On the other hand teaching model-driven development skills
slowly influences the practices in industry as an increasing number of graduates might
make realizing the vision of MDD possible.

The educator's symposium at MoDELS is intended as a forum in which educators
and trainers can meet to discuss pedagogy, use of technology in the classroom, and
share their experience pertaining to teaching modeling techniques and model-driven
development.

The leading topic of this symposium was the synergy between industrial needs,
influences on education and vice versa. A special emphasis will be put on the synergy
between industrial needs and university education. In particular the following topics
are encouraged:

• Designing of and experience from university courses at various levels with
industrial needs in mind

• How to include industrial experiences into teaching modeling and MDD
• How to identify modeling-related topics to be undertaken while teaching modeling

and MDD, which are of interests to industry
• How to ensure and assess industrial relevance of the contents of modeling courses
• How to assess industrial relevance of the teaching/learning process
• How the teaching of modeling techniques influences industrial practices
• Methodology issues (how to teach modeling or MDD) with industry in mind
• Integrating modeling and MDD into the software engineering curriculum

www.manaraa.com

 Educators’ Symposium at MoDELS 2006 289

• Teaching modeling, MDD and associated tools (requirements, available tools)
• Requirements from industry for university education in MDD
• Experiences from industry about education in MDD
• Case studies on required skills for realizing the vision of MDD.

Presentations

The presentations at the Educators’ symposium leaned towards industrial relevance of
modeling courses. The majority of papers considered the issues of industrial relevance
of the education, which was one of the main topics of the symposium. In particular
the papers addressed the following issues:

• experiences with teaching modeling throughout the software engineering
curriculum

• using project-based learning as a vehicle for teaching modeling
• teaching modeling through student projects where parts of tools are implemented
• teaching modeling in the context of J2EE applications
• using an artificially created software development laboratory as a means of

enhancing the motivation for learning modeling

All topics formed a basis for the discussion on subjects related to teaching the
concepts of modeling and model-driven software development. All papers considered
model-driven software development as the necessary skills for the future software
developers.

The variety of authors from various countries from 2 continents provided an
opportunity to compare the industrial views on modeling – from modeling being a
desired skill in industry to modeling being only a surplus (while the desired
competence was in the tools and technologies). These aspects led to two interesting
discussion sections.

Discussions

The discussions during the symposium were concerned with two main aspects:
maximizing students’ chances of success on the global job market, building an
experience exchange network between the student community and the teacher
community. The following points were addressed during the discussion:

• Course content, in particular lectures and supplementary activities, such as
exercises and laboratories,

• Process of teaching
• Format of the course, in particular, the distinction between education and training,

as the latter seems to be more appreciated by industry
• Course support

• training materials, such as textbooks, material from the web, Wiki – maintained
by the students themselves,

• Tools used during courses.

www.manaraa.com

290 L. Kuzniarz

Main directions of the next symposium were also discussed. The first is industrial
relevance from the students’ learning perspectives. The next symposium is going to
address the teaching process by observing elements important for students in order to
be more competitive on the job market, to minimize the effort required to adjust to the
company environment, and to maximize the benefits from the modeling skills.

Second, but not less important direction was that there is a need for a poster session
where educational models are displayed and the educational aspects are highlighted.

There is also a suggestion to investigate a possibility of having a joint session with
the doctoral symposium, as the doctoral students are a part of the intended audience of
the courses given in modeling. In particular the joint session would be intended to
acquire their opinions on the industrial relevance of the courses they had during their
studies. Finally, the participants stressed the need to involve students from the
university which is organizing the next MoDELS conference in the discussion
sessions in the symposium.

A valuable contribution to the symposium was the invited presentation by Robert
France on the basic ideas behind the repository of models for Model Driven
development. The repository is being developed within the REMoDD project aimed
at developing a community-driven repository that will contain artifacts whose use can
significantly improve MDD, and enhance the learning experience of MDD students.
The second aspect – teaching and learning perspective – has been later discussed. In
particular, the questions of what should be included in the repository from
teaching/learning perspective , how the access to its resources for teachers and
students has to be arranged, and how to ensure the quality and didactic relevance of
the artifacts in the repository. The description of the projects has been included as one
of the symposium follow up materials.

Summary

The symposium presentations gave a representative treatment of the issues related to
industrial relevance of model focused and driven education. The discussion tried to
discuss and assess the teaching from both teacher and student perspectives and
building an experience network.

Based on the discussion among the program committee and voting of the
participants, two papers were nominated as the best papers:

• If You’re Not Modeling, You’re Just Programming: Modeling throughout an
Undergraduate Software Engineering Program, by James Vallino, from
Department of Software Engineering, Rochester Institute of Technology, USA, -
describing a holistic approach to the introduction of modeling awareness in
engineering practice in the overall software engineering curriculum.

• Teaching software modeling in simulated software environment, by Robert
Szmurlo and Michal Smialek, from Warsaw University of Technology, Poland -
presenting an attempt to show the students how to cope the real life problems of
project development in a simulated environment.

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 291 – 300, 2007.
© Springer-Verlag Berlin Heidelberg 2007

If You’re Not Modeling, You’re Just Programming:
Modeling Throughout an Undergraduate Software

Engineering Program

James Vallino

Department of Software Engineering, Rochester Institute of Technology
Rochester, NY 14623-5608, USA
J.Vallino@se.rit.edu

Abstract. Modeling is a hallmark of the practice of engineering. Through
centuries, engineers have used models ranging from informal “back of the
envelope” scribbles to formal, verifiable mathematical models. Whether circuit
models in electrical engineering, heat-transfer models in mechanical
engineering, or queuing theory models in industrial engineering, modeling
makes it possible to perform rigorous analysis that is the cornerstone of modern
engineering. By considering software development as fundamentally an
engineering endeavor, RIT’s software engineering program strives to instill a
culture of engineering practice by exposing our students to both formal and
informal modeling of software systems throughout the entire curriculum. This
paper describes how we have placed modeling in most aspects of our
curriculum. The paper also details the specific pedagogy that we use in several
courses to teach our students how to create, analyze and implement models of
software systems.

1 Introduction

There has been much discussion of software development as an engineering
profession and what changes are necessary in the undergraduate education of software
professionals for the profession to move forward [1-3]. In 1993, Rochester Institute
of Technology (RIT) began the design of a curriculum leading to the Bachelor of
Science in Software Engineering [4, 5]. We developed our curriculum from the
ground up rather than by adding a small set of software engineering courses to an
established curriculum in computer science or computer engineering. We created
software development to be primarily an engineering endeavor and

2 The Difficulty of Modeling Software Systems

A hallmark of engineering design is the use of models to explore the consequences of
design decisions. Sometimes these models are physical prototypes or informal
drawings, but the sine qua non of contemporary engineering practice is the use of

www.manaraa.com

292 J. Vallino

formal, mathematical models of system structure and behavior. Unfortunately, the
current practice in software engineering is such that rigorous models from which one
could derive significant properties are either too rudimentary or so tedious to use that
it is difficult to justify the incremental benefit in other than the most critical of
systems. This reflects a key distinction between software and traditional engineering:
whereas the latter builds on numerical computation, software is more appropriately
modeled using aspects of discrete mathematics. The models stress relationships
between software components, and numerical computation is the exception.

3 Modeling Throughout the Curriculum

We designed our curriculum to provide a focus on the principles and practices for the
engineering of software systems through their entire life cycle. Our answer to the
topical question, “How does modeling integrate into the software engineering
curriculum?” is “It should be emphasized throughout the entire curriculum.” Despite
the difficulties described in the previous section, our curriculum stresses modeling
throughout from more informal models expressed in the UML [6] to those expressed
in mathematically rigorous languages such as Alloy [7] and FSP [8]. This emphasis
on modeling is reflected in two of our ten program outcomes:

1. Model and analyze proposed and existing software systems, especially through the

use of discrete mathematics and statistics.
2. Analyze and design complex software systems using contemporary analysis and

design principles such as cohesion and coupling, abstraction and encapsulation,
design patterns, frameworks and architectural styles.

Students develop their modeling skills starting with basic object-oriented design

and progress through the remainder of the curriculum to higher levels of modeling
abstractions in all areas of software engineering including architecture,
requirements, verification and validation, and formal models. This paper describes
how we incorporated modeling into most of the courses in our curriculum. Figure 1
shows the sequencing of courses this paper discusses. Except for the three courses
within the box labeled “Design Electives” these are all required courses in our
program. These software engineering courses are from the “design side” of our
program. There are also required and elective courses on a “process side.”

This paper first describes how we introduce our students to abstraction through
modeling and move them from a programming view of software development to an
engineering view. Next is a description of our use of mathematically formal models
where our overall goals are three-fold: to acquaint our students with modern
modeling tools, to connect the courses they take in discrete mathematics to real
applications, and to persuade them that mathematics has much to offer to the
engineering of quality software. In the context of these formal models we introduce
our students to model-driven development. The paper concludes with a description
of problems still to be solved and indications of success of modeling in a software
engineering curriculum.

www.manaraa.com

 If You’re Not Modeling, You’re Just Programming 293

3.1 Basic Object-Oriented Modeling

The students in our program spend their first year studying the fundamentals of
object-oriented programming. Three courses cover topics in basic programming,
object-oriented technology, data structures, and algorithms with simple complexity
analysis. Students are exposed to class diagrams in UML notation beginning in the
middle of the first course. Modeling discussions stay at rather low levels, considering
questions, such as, which nouns might represent objects in the system or state within
the objects and which verbs are behaviors in an object. The design activity is mostly
concerned with the design of single classes and interactions between pairs of classes.

Students in the three computing disciplines take an introduction to software
engineering[9] during their second year. This is the first course taught by the
Department of Software Engineering faculty. The main component of this course is a
term-long team-based project using teams of 4 or 5 students. This course covers
topics such as roles on a software development team, software development
lifecycles, requirements specification, design principles, and user interface design.
Each team develops a product from requirements through product iteration deliveries.
For the first time, students are confronted with subtleties in the UML such as the
distinctions between associations, aggregations and compositions. Teams must
document their designs using UML class diagrams, sequence diagrams and
statecharts. As they develop a larger system in this course, our students first begin to
appreciate the importance of design modeling.

Fig. 1. Modeling in RIT’s Software Engineering Design Courses

Design Electives

CS Object-Oriented
Programming

Introduction to
Software Engineering

Formal MethodsEngineering of
SW Subsystems

Design of
Info Systems

Software
Architecture

Distributed
SW Systems

Modeling of
R-T Systems

Senior
Proj. I/II

Discrete
Math I/II

Concurrent
SW Systems

CS Theory

Software
Reqs & Specs

www.manaraa.com

294 J. Vallino

3.2 Modeling in a Course on Design Patterns

The next course, Engineering of Software Subsystems, covers most of the patterns in
[10] using a problem-based learning (PBL) pedagogy. Instructors lecture for no more
than 6 hours throughout the entire course. The traditional lecture time is replaced
with active learning by the students doing class exercises and holding team meetings
to discuss the project work which emphasizes modeling software systems using the
patterns. The two team projects involve the design of a software system in the 2 to 3
kSLOC range. The team models its solution in the UML using class diagrams,
sequence diagrams and statecharts. Discussions with the instructor center on the
tradeoffs in various design approaches and the appropriateness of design pattern
usage.

The first and the last assignments in the Engineering of Software Subsystems
course particularly highlight the emphasis placed on modeling of designs. Students
are confronted with a modeling challenge in the first class when they are given a
design problem to solve using the modeling skills that they have developed through
three quarters of computer science programming courses and one software
engineering course. At the beginning of the second class each student will
individually submit a first cut at a UML class model for the problem. The second
class is divided into three parts. First, groups of three or four students will work
together to create a consensus model incorporating the best aspects of the individual
models. Next, teams present their models to the entire class. Finally, the instructor
leads a discussion on ways in which groups of classes in these models relate to each
other and to the solution of the problem pointing out where established patterns were
used and the advantage of discussing the design at this subsystem level.

The last assignment challenges the students’ modeling abilities in new ways.
Each unit team is given the final code and documentation for a student project
submitted for our introductory software engineering course. The first task is to
reverse engineer the code to obtain a UML class model for the system and identify
any, most likely inadvertent, design pattern usage. The team must capture dynamic
models for the program by creating sequence diagrams for two significant program
features. After gaining an understanding of the as-built system model each team will
propose and implement a refactoring of the code base by following the principles that
the course stresses and applying their newly gained knowledge of design patterns.

In design presentations throughout the course, teams must discuss how their
modeling activities have considered design principles, such as, encapsulation,
coupling, cohesion, and separation of concerns. As mentioned earlier, a cornerstone
of modern engineering practice is the use of quantitative models to do early design
analysis. In our assignments, we require students to manually compute some simple
metrics, such as, class size and average class coupling from their design models. As
part of the initial reverse engineering in the refactoring assignment, the teams use the
Eclipse Metrics plug-in[11] to compute program metrics. Teams use this information
to guide their refactoring efforts and work to improve on the project’s metrics with
their refactored implementation.

We have evidence that this approach to building modeling skills works. A
quantitative comparison with a non-PBL version of the course matches the research
on problem-based learning[12]. There is a statistically significant improvement in

www.manaraa.com

 If You’re Not Modeling, You’re Just Programming 295

student satisfaction with and perceived learning from the course. The students also
have a greater appreciation for the course textbook which they now must actually read
because of the minimal lecture pedagogy used.

4 Formal Modeling

While the models discussed to this point have semantic definitions there is often
disagreement between practitioners in their understanding of those semantics
particularly when dealing with UML constructs. Disagreements, such as these, rarely
exist when the models have a formal mathematical definition. The modeling is
capturing logical interconnections and relationships between components using
discrete mathematics rather than numerical attributes using continuous mathematics.
The software engineering design models are difficult to analyze because of the
complexity of the systems being designed and built. Despite these shortcomings, we
believe it is important for our students to see that mathematical formalisms indeed
undergird software design and provide benefits for engineering quality software.

4.1 “Theoretical” vs. “Practical” Modeling

We believe that the science of formal modeling is in the domain of the computer
science and the engineering application of formal modeling is in the software
engineering domain. Our approach begins with our students taking two courses in
discrete mathematics followed by a computer science theory course, which includes
the topics of languages, finite state machines, pushdown automata, Turing machines,
and basic computability theory. We want the emphasis within software engineering
to be on what we sometimes refer to as “practical” formal models. Our Formal
Methods for Specification and Design course focuses on the development of
mathematical models of software systems, and applying those models to the analysis
of system properties, and to verifying design and implementation decisions. This
course has used formalisms such as Z, VDM, and, most recently, Alloy[13] to capture
system behavioral requirements, and uses simulation, and proof to analyze system
properties. The assignments and projects are almost exclusively modeling and model
checking exercises.

4.2 Finite State Process Modeling of Concurrent Systems

For a modeling methodology to be useful for the design of concurrent systems it
should meet two criteria. First, the formalisms should be at a level that reduces the
scale and complexity of the system sufficiently to allow the software engineer to
analyze its important concurrent properties such as deadlock and progress checks.
Second, there should be tool support available so that the analysis is done
mechanically rather than by hand. The Finite State Process (FSP) modeling technique
described by Magee and Kramer[8] satisfies both of these criteria and is the
methodology emphasized in our Principles of Concurrent Software Systems[14].
Individual sequential FSP models use standard finite state machine semantics
(mutually exclusive states, instantaneous execution of actions causing transitions) that

www.manaraa.com

296 J. Vallino

our students easily grasp. Students do not have difficulty modeling non-concurrent
FSPs. Modeling of concurrent systems is accomplished by composing multiple
sequential FSPs into a single parallel composition. This is where students often
struggle getting synchronization aspects of the model correct.

A tool called the Labeled Transition System Analyzer (LTSA) allows students to
edit and analyze their FSP models. A major advantage of the LTSA is that with just a
few hours of studio classroom time, students can do productive work within the
LTSA environment. Model checking features provide analysis of deadlock, safety
violations and progress failures.

Having mathematically proven that the model does not contain any anomalous
behaviors, the intention is to keep the implementation as closely tied to the model as
possible. To complete this model-driven development, it would be optimal to generate
an implementation of the model via autocoding. The LTSA does not have an
autocoding feature requiring students to do manual implementations. Students think
about mappings from model elements to implementations. This yields a mechanical
conversion to generate the code for the concurrency framework captured in the model.

When we initially taught this course, we did not explicitly cover the formal FSP
semantics. We assumed that the students would recognize the application of discrete
mathematics in the finite state machines that are the basis of the FSP semantics. We
were quite surprised, then, when over 75% of the students answered “Not applicable”
to the question, “How much did this course require you to demonstrate an ability to
model and analyze proposed and existing software systems, especially through the use
of discrete mathematics and statistics?” We added discussion of the formal semantics
for each FSP feature. Students now recognize that while they may not be “doing
discrete math” they are applying it in the design and analysis of concurrent systems.

Each of the projects we assign requires the team to use a model-driven
development approach. One problem with FSP modeling is state-space explosion.
The larger projects that we assign in this course will commonly have millions
of states in the composite. While LTSA can handle systems of this size, a naïve
approach to modeling will exceed the capacity of the tool. This aids student learning,
in that it forces them to model the system at a level of abstraction that captures all the
essential concurrency issues while fitting within the capacity of the LTSA.

4.3 Model-Driven Development

One course in our curriculum has model-driven development at its core. This elective
course, Modeling of Real-Time Systems, is in our multi-disciplinary real-time and
embedded systems course sequence[15]. The requirements and architectural design
project has the team create a requirements specification for a small consumer device.
The team does a UML use case analysis of the product followed by an architectural
design and high-level class structural design. In the second project, the instructor
provides a statement of requirements and the team models the behavioral
requirements in a UML statechart, creates a class-level design and set of sequence
diagrams, and implements the complete system. The third project is a complete
model-driven development using statecharts for behavioral modeling of real-time and
embedded systems. The students explore the code generation features of the Ilogix
Rhapsody modeling tool they have been using throughout the course. The teams

www.manaraa.com

 If You’re Not Modeling, You’re Just Programming 297

create a statechart-based definition of the system behavior and automatically generate
C++ code for the application. A final individual project requires students to model a
system, such as an auto power window controller, and reverse vending machine, with
an identification of actors, a UML use case analysis, class structural design, and
system dynamic modeling using sequence diagrams and statecharts.

5 Modeling in Other Design Areas

The previous sections described how our Engineering of Software Subsystems course
sets the foundation for our students’ use of design modeling and abstraction, and the
way we present formal modeling to our students. This section describes how design-
oriented courses throughout the rest of our program reinforce the software engineer’s
reliance on modeling and abstraction.

In the Principles of Distributed Software Systems course students work with the
Concurrent Object Modeling and Architectural Design Method. This method follows
the traditional UML approach, with a heavier emphasis placed on interaction models
and communication diagrams.

Entity-Relationship-Diagrams, considered by some to have been a precursor to
object-oriented class models, are the models that students develop and analyze in
Principles of Information Systems Design. The course also requires teams to use
J2EE Blueprints and enterprise-level patterns as abstractions in their information
system designs.

In the Software Requirements and Specifications course our students see modeling
techniques for expressing software requirements. Students model system requirements
using UML activity diagrams and by applying analysis-level patterns. The course also
exposes the students to Data Flow Diagrams and Nasi-Scheiderman diagrams as legacy
modeling techniques that they may need to understand if they are required to work on
older systems that had originally used those two methodologies.

In the Software Architecture course, students are challenged with understanding and
developing models of software systems at the highest levels of abstraction. They must
model the system from multiple architectural perspectives[16]. Views include, for
example, structural, process, deployment, and concurrency. Systems are also assessed
based on quality attributes in the areas of availability, modifiability, performance,
security, testability, and usability. We also teach this course in a problem-based format.
Assignments include preparing one-page executive summary memos that describe the
effect a new technology will have on a product, and to advocate for a product line
approach for a new development project. Case studies provide prominent examples of
architectural analyses in the course. Teams select an open-source or well publicized
architectural framework and perform their own architectural analysis of it.

6 Problems Still to Solve

This paper has discussed our approach to infuse software systems modeling
throughout an undergraduate software engineering curriculum. This section will
describe some of the problem areas that still remain.

www.manaraa.com

298 J. Vallino

6.1 Using a Consistent Subset of UML

We are not satisfied that we have chosen the right aspects of the UML to cover in
each of our courses. We need additional emphasize on the semantics for basic UML
class relationships. In several of our design-oriented courses we give a short UML
quiz early in the term. There are many students who continue to have difficulty
distinguishing the semantic differences between association, aggregation and
composition.

We originally used use case analysis of requirements in our introductory course.
The analyses that teams submitted were so poor that we questioned whether there was
any educational benefit. In this case, we opted for an agile approach and switched to
user stories to specify requirements. We felt that this was adequate for this
introduction to software engineering, which is taken by students in computer science,
computer engineering and software engineering, as long as the SE students saw full
use case analysis in our Software Requirements and Specifications course.

6.2 Getting Students to Trust Their Models

Our students are comfortable with model-driven development when the models are
class-based models. They still grapple with other abstraction models such as the
concurrency models seen in Principles of Concurrent Software Systems. Students do
not trust their FSP model and their ability to use the model to create a working
implementation. We have observed, however, that the emphasis on modeling gives
students an improved understanding of the system requirements and the thread
synchronization points, which is a benefit even if they abandon the model during
implementation.

7 Success of Modeling Throughout the Curriculum

RIT’s traditional focus on career-oriented education means that almost all of our
students enter the workforce upon graduation and their employers are a major
stakeholder in the outcomes of the program. Discussions with campus recruiters and
members of our Industrial Advisory Board have indicated an existing emphasis on or
a strong move toward modeling using the UML. While we would not attribute the
success of our students in their employment only to our program’s emphasis on
modeling, we do believe, however, that it is a prime factor that attracts employers to
our students.

7.1 Preference for a Modeling-First Approach

A review of co-op employment evaluations provides anecdotal evidence of the value
of our students’ training to their employers. An engineering manager in an aerospace
company, which has hired many of our students on co-op and in full-time positions,
commented that the students have a strong focus on capturing requirements and
system modeling. An engineering vice-president, who has hired several of our
students and sponsored senior projects, commented that our graduates match up
favorable against some software engineers who have been working for him for five

www.manaraa.com

 If You’re Not Modeling, You’re Just Programming 299

years. A non-SE RIT faculty member, who manages interns for a health insurance
provider, noted a significant difference in how software engineering students learn
about a system. The SE students ask questions about components, architecture, and
interactions between the components, preferring a higher-level and more abstract
model-driven discussion. The computer science and information technology students
tend to quickly ask for examples of working code and begin understanding the system
from the bottom up. The SE students overwhelmingly believe they formed the base
for this methodology in Engineering of Software Subsystems when they were forced
to think abstractly about their projects using design patterns rather than code
implementations.

7.2 Analysis of Formal Models

Even though the LTSA tool used in our concurrent systems course is not “industrial
strength”, one student used it on a co-op assignment. The student sensed that there
was a problem in a protocol that he was asked to implement. The student
remembered the features provided by LTSA; with an afternoon of effort he modeled
the protocol, executed traces, and uncovered a progress failure that prevented the
protocol from continuing to completion under certain circumstances. The model
highlighted the exact problem that was latent in the system thus eliminating many
hours of debugging and finger pointing between the hardware and software engineers.

8 Conclusions

The RIT undergraduate program in software engineering instills an engineering
mindset in students. Our program exposes our students to both the informal
modeling, which is more prevalent in software engineering practice, and formal
modeling, which has benefits derived from its underlying mathematical rigor.
Without the constraints of traditional computer science or computer engineering
programs, we designed a curriculum in which modeling applied to software
development is prominent throughout the curriculum. We believe that this emphasis
on modeling is a distinguishing characteristic between the science and engineering of
software development. As research in model-driven development progresses, we will
adapt our curriculum to ensure that our students graduate with an ability to model
complex software systems using state-of-the-art practices and abstractions.

References

[1] M. Shaw, "Prospects for an Engineering Discipline of Software." IEEE Software, v7, n6,
Nov/Dec 1990, pp.15-24

[2] D. L. Parnas, "Software Engineering Programs Are Not Computer Science Programs."
IEEE Software, Nov/Dec 1999, pp 19-30

[3] T. B. Hilburn, “Software engineering education: a modest proposal.” IEEE Software, v14,
n6, Nov/Dec. 1997, pp 44 – 48

www.manaraa.com

300 J. Vallino

[4] J. F. Naveda and M. J. Lutz, “Crafting a baccalaureate program in software engineering.”
Proceedings of the Conference on Software Engineering Education & Training, April
1997,.

[5] Department of Software Engineering, Rochester Institute of Technology,
http://www.se.rit.edu.

[6] M. Blaha and J. Rumbaugh Object-Oriented Modeling and Design with UML (Second
Edition). Prentice-Hall, 2005.

[7] D. Jackson “Alloy: A Lightweight Object Modeling Notation.” ACM Transactions on
Software Engineering and Methodology (TOSEM) v11, n2, April 2002, pp. 256-290

[8] J. Magee and J. Kramer Concurrency: State Models and Java Programs. John Wiley &
Sons, 1999.

[9] Ludi, S., Reichlmayr, T., and Natarajan, S. “An Introductory Software Engineering
Course That Facilitates Active Learning,” Proceedings of ACM SIGCSE Conference,
St.Louis, MO. February, 2005.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns Elements of Reusable
Object-Oriented Software. Reading: Addison-Wesley, 1995.

[11] Eclipse Metrics Plug-in, http://metrics.sourceforge.net/.
[12] J. Vallino “Design Patterns: Evolving from Passive to Active Learning.” Proceedings of

the Frontiers in Education Conference. Boulder, CO. November 2003.
[13] M. Lutz “Exploratory Mathematics: Experiences With Alloy In Undergraduate Formal

Methods,” Proceedings of 2006 American Society of Engineering Education Conference,
Chicago, IL. June 2006.

[14] M. Lutz and J. Vallino “Concurrent System Design: Applied Mathematics & Modeling in
Software Engineering Education,” Proceedings of 2005 American Society of Engineering
Education Conference, Portland, OR. June 2005.

[15] J. Vallino and R. Czernikowski “Thinking Inside the Box: A Multi-Disciplinary Real-
Time and Embedded Systems Course Sequence,” Proceedings of Frontiers in Education
Conference. Indianapolis, IN. October 2005.

[16] L. Bass, P. Clements, and R. Kazman Software Architecture In Practice. Addison-
Wesley, 2003.

www.manaraa.com

Teaching Software Modeling in a Simulated
Project Environment

Robert Szmurło and Michał Śmiałek

Warsaw University of Technology, Warsaw, Poland
{szmurlor,smialek}@iem.pw.edu.pl

Abstract. Teaching software engineering in the academia always faces
the problem of inability to show problems of real life development
projects. The courses seem to be unable to properly show the need of us-
ing software modeling as important means of coping with complexity and
handling communication within the project. The paper presents format
of a course that tries to overcome this. It focuses on application of mod-
eling tools in a realistic software engineering environment. The objective
is to teach best practices of software design and implementation with the
use of UML. The students can practice design and communication tech-
niques based around CASE tools in teams of 12 to 14 people. The paper
summarizes 5 years of experience in teaching modeling with CASE tools.
Authors present a concept of how to simulate the roles of architects, de-
signers and programmers as close to reality as possible. The paper also
discusses the problems of organizing laboratory work for a large group
of students. Authors present the tasks and their arrangement during the
course.

Keywords: software modeling, education, CASE tools, project commu-
nication, UML.

1 Introduction

When teaching software engineering in the academia (and perhaps also in the
industry) we face a very important problem of inability to show the reality of an
actual software development project. Two elements seem to be important here:
scale and communication. A typical project in the software industry produces
tens or hundreds of thousands of lines of code which means hundreds or thou-
sands of classes (in Java, C# or other OO language). Moreover, such a project
involves many developers that play different roles (architects, designers, etc.) and
need to communicate efficiently. On the other hand, typical group projects in
the academia involve two to four students that together produce several hundred
or perhaps several thousands of lines of code. With such a scale it is relatively
easy to manage the code without any special models or modeling tools. With
only a couple of students involved, the communication between them is relatively
simple and can be accomplished through frequent “code analysis” meetings.

Problems in teaching scale and communication result in that the graduates
coming to the industry are not prepared to participate in real scale projects. This

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 301–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

302 R. Szmurło and M. Śmiałek

seems to be one of important causes for not using modeling tools and applying
in many projects a “code first, then document" approach. Many real projects
seem to use the process of creating code similar to the one during courses, where
students produce a couple of hundreds of lines of code.

Considering the above, there seems to be a very serious need to design a course
where the students would learn how to apply modeling techniques in a realistic
development environment [1,2]. This environment would need to be based on
an assignment to create a significantly sized system in a team of more than
10 student developers. Such an environment would allow the students to apply
the knowledge they gained about modeling and software lifecycle process during
traditional lecture-oriented classes. It would also allow to apply modern CASE
tools in an environment where such tools are really recommended.

When trying to design a format for such a course, several problems arise. The
most important of them is how to organize students in larger groups. Large group
contradicts “fairness” of marking as it allows poor students to “hide” behind those
that really do the work. Another problem is communication in a large group of
students. They normally don’t meet regularly “at work”, as people in real projects
do. Yet another issue is how to divide responsibilities and distinguish between
analysts, architects, developers, testers (and so on) [1].

In this paper we describe a course format designed by us which tries to take
into account the above issues. The main goal was to teach the students how to
use software modeling tools to organize their work in a realistically sized project.
The idea here is that students should be organized in larger “project teams” (of
more than 10 people). At the same time they need to be marked in smaller
groups (of up to 3) and also individually. An important constraint for the course
is the time assigned to it (30 hours for common lab work plus work at home).
This necessitates certain simplifications of the development lifecycle. Finally,
the goal of the course was to teach proper organization of group work around
good quality architectural models that are consistent with precise requirements
models. This makes it necessary to organize work around components with well
defined interfaces. These components should be independent enough to prevent
from a situation where a poorly performing group endangers other groups in the
same project causing the whole project to fail and lower the marks significantly.
This all should lead to a situation where the students would not hesitate to
apply best modeling practices gained during the course in their real working
environments after graduation.

2 Course Format

The course entitled “Object Oriented CASE Tools” is taught as part of an MSc
degree in Computer Engineering at the Warsaw University of Technology. The
students are assumed to have knowledge of software modeling in general and
UML [3] in particular. Most of the students should have already taken a course
in object oriented analysis and design or equivalent.

www.manaraa.com

Teaching Software Modeling in a Simulated Project Environment 303

Project team

Designers

Architects
Architectural

model

Detailed
design model

Database
model

Code

Fig. 1. Project team divided into sub-teams with assigned models and code

The presented course is taught for five years already. It consists of 30 hours of
lab sessions plus student’s work at home (individually and in groups). The stu-
dents are suggested a wide range of textbooks for the course [3,4,5,6,7]. Through-
out the years the course format had evolved, however the main concept remains
unchanged. The assignments are based on larger groups of students (around 12-
15 people). During one semester, several such groups (usually 5-6) are formed to
constitute “project teams”. These teams divide themselves into smaller sub-teams
(architects + designers/programmers). This division is illustrated in Fig. 1. Usu-
ally, a sub-team of architects consists of three students. Designer sub-teams in-
volve basically two students.

The project teams receive an assignment to write a small but complete soft-
ware system according to a specific requirements specification. The teams have
to design their systems by dividing them into components and then into classes.
This is done under constant supervision of the teachers. Components forming
the architectural model are managed by the architectural sub-team (see Fig. 1).
Individual components are assigned to design sub-teams. These sub-teams have
to design and then implement classes realizing interfaces of assigned components.
The development efforts of design sub-teams are controlled by the architectural
sub-team. Architects integrate the whole system and assure proper communica-
tion between other sub-teams to make this integration feasible.

All the development efforts in a project team are centered on the usage of a
CASE tool. The teams have to produce three UML models: component model,
design class model and interaction model (sequence diagrams). These design
models are based on a use case model supplied by the teachers as part of the
assignment. Moreover, the students have to write scenarios for the assigned use
cases. Teachers assure that the models are consistent and strongly suggest the
use of layered architecture. An important part of the work is to generate code
from models and assure their synchronization. Detailed design models (class and
interaction) are checked for compliance with the architectural model (component
and interaction). Later code is checked for compliance with the detailed design.

www.manaraa.com

304 R. Szmurło and M. Śmiałek

MenusMenus

ManagerManager

VerifierVerifierVerifierVerifier

FormsForms

ICheck

IForms

ILogic

:ILogic:Menus :ICheck:IForms
:Stock broker

RegisterStock()

GetStockData()

CheckStock(stock)stock

OK

ManagerManager

ILogic IForms

ICheck

Manager

ILogicILogic

RegisterStock()

ILogicILogic

RegisterStock()

ICheckICheck

CheckStock(in stock): bool

ICheckICheck

CheckStock(in stock): bool

IFormsIForms

GetStockData(out stock)

IFormsIForms

GetStockData(out stock)

«realize» «use»

«use»

XStockXStock

number : logint

XML

expire : Date
range : MoneyRange

XStockXStock

number : logint

XML

expire : Date
range : MoneyRange

StockHandlerStockHandler

repetitions : int

RegisterStock()
decideNextScreen(inp)

StockElementStockElement

position : int

VerifyStock() : bool

StockListStockList

maxElements : int

AddElement(stock)
Sort()

RegisterStock()

:ILogic :ICheck:IForms:StockHandler

stock:StockElement

RegisterStock()

GetStockData()

stock

VerifyStock()

CheckStock(stock)

OK

OK

RegisterStock()

:ILogic :ICheck:IForms:StockHandler

stock:StockElement

RegisterStock()

GetStockData()

stock

VerifyStock()

CheckStock(stock)

OK

OK

class StockHandler implements ILogic {
int repetitions;

void RegisterStock() {
stock = new StockElement;
// some code...
iforms.GetStockData(stock);
// some code...
res = stock.VerifyStock();
// some code...

}

void decideNextScreen(int inp) {
// some code...

}
}

Fig. 2. Mappings between models and code produced during the course

The relationship of models produced during the course by project teams is
illustrated on Fig. 2. The architects (in cooperation with designers) produce
component diagrams and also design all the interfaces to these components. Use
case scenarios are designed with architectural interaction diagrams compliant
with the component model. The design sub-teams have their components as-
signed and then produce appropriate class diagrams that define the structure
of each of the components. Architectural interaction diagrams are transformed
into detailed design interaction diagrams. These describe the details of each of
the interface operations, as to be implemented inside the considered component.

The project teams constitute themselves during the first meeting of the course
which takes 2 hours. This time is also used by the teachers to explain all the
details of the course format. After the initial meeting, the remaining time is
divided into three phases. In the first phase (6 meetings), the students have to
design the system. During the second phase (5 weeks) they implement it. Finally,
the last phase (3 weeks) is devoted to testing.

The limited time the teams have to develop the system puts certain constraints
on the size of the assignment. The system should be simple enough to be imple-
mented by inexperienced developers in around 60-70 hours (800-900 man-hours).
Having this limitation, the system should be quite small but non-trivial which
we will discuss later. Additional constraint about the system is the ability to di-
vide the project teams into sub-teams responsible for their parts (components).
This constraint is necessary because the students work individually at home and
they must be marked on an individual basis.

www.manaraa.com

Teaching Software Modeling in a Simulated Project Environment 305

In order to cope with the above issues an appropriate choice for the assign-
ment domain area is very important. In our experience with the course we have
chosen four different domains for the applications to be built by the students.
In the first year, the students had been creating a management system for an
academic departmental library. In the second year the assignment was to design
and implement the simulator of an intelligent building. In this assignment, the
students were to design a home appliance control system (HACS). The system
should had simulated such devices as automatic curtains, indoor/outdoor lights,
gates, air conditioners, clocks, bells, security sensors, etc. (it was also used by
others, see [1]). Here, the main focus was put on designing a distributed sys-
tem of devices and a communication protocol between them. The central role in
the architectural design played a message dispatcher module which was finally
implemented by the architects.

In the third and fourth edition of the course, students were to design and
implement a management system for the dean’s office. In this project the sys-
tem should support registering student candidates, promoting candidates into
students, employing teachers, storing the students’ final grades, etc. The re-
quirements for the system included more than 20 use cases and proved to be
too complex for the course. For the second time the assignment was modified.
The students were explicitly asked to limit the number of implemented use cases
before they started the work.

In the most recent edition of the course, we have simplified the project require-
ments and reduced the number of use cases in the assignment. In this project,
the students had to design and implement an electronic ticketing system of a
theme park. The requirements for the system contained just eight major use
cases (with two extra for larger teams). Appropriate use case diagram is pre-
sented in Fig. 2a. Having such a functional requirements model, the system
could be easily divided into four (or five) distributed application modules based
on the involved actors. The presented use case model was communicated to the
students through a model template file (see Fig. 2b - “Use cases” package). This
file divided the model into the packages: Requirements, Architecture and De-
tailed Design (Components). The structure of the model and division into major
packages is consistent with the project’s lifecycle and facilitates communication
based around requirements and architectural design.

The overall project timeline is divided into three phases: design, implemen-
tation and tests. Throughout the phases, the students can choose to play two
different roles. In the first phase each designer/programmer sub-team creates the
designs for the assigned use cases (two chosen from Fig. 2). The architects cre-
ate an overall component diagram containing all the components of the system
(including data access layer components) and design the structure of a database.
During the second phase, the designed components, database and interfaces are
implemented. Both roles have to accomplish different tasks, which are divided
into individual and shared ones. The division is motivated by the need to grade
individual sub-teams and and at the same time to give importance to group
work character of the project.

www.manaraa.com

306 R. Szmurło and M. Śmiałek

(a) (b)

Fig. 3. (a) Use cases of the theme park project (b) Template model divided into packages

The design and implementation phases of the project are associated with a
concept of exchanging designs between sub-teams. In the second part of the
course every sub-team has to implement scenarios and components designed
by another sub-team. The two sub-teams simply exchange their design models.
Students have to explain their designs to members of the other sub-team. This
approach allows to gain experience what kind of information should be included
in the design models, and how properly present it. This is also a good way to
illustrate various kinds of obvious mistakes and mis-designs that had been made.
In the last phase of the course, the students have to design and run acceptance
tests of the system. Within the described division of the course into design,
implementation and testing, the course has several milestones, set to allow for
marking of the students’ progress and systematic work. Generally, half of the
points is assigned for the quality of design and the rest - for the implementation
and tests.

In the first editions of the course we have tried to simulate the iterative project
lifecycle. However, the limited time did not allow us to simulate it properly. In
the recent course, we have limited the lifecycle to just one “normal" iteration
with a second “corrective" iteration. This allows us not to make the process
shift into a pure waterfall (see eg.[8,9]). The second, short iteration allows us
to simulate the iterative lifecycle [10] to some extend through a second deadline
for acceptance tests. The first deadline simulates tests after an initial iteration
in a project. Normally, the tests fail demonstrating to the students the problem
with waterfall approach, where it is normal for the system not to pass the tests
(for various reasons). In the “second” iteration the students do not produce new
functionality but correct (or enhance) these parts of the system that caused the

www.manaraa.com

Teaching Software Modeling in a Simulated Project Environment 307

tests to fail. With this approach we can show to the students the need to organize
their projects with “risk buffer” of an iterative process.

Important part of the course is devoted to the administrative aspects of a
software development project. The students have to use a CASE tool available
to them in the university’s labs. For the purpose of this course we have used
Enterprise Architect by Sparx Systems [11]. The tool allowed to integrate models
made by individual sub-teams into a common model. This common model could
be automatically published on a project team’s web page. The web pages were
used by the teams to communicate (including communication of changes in the
architecture and interface implementation) and verify progress.

Apart from the CASE tool, the teams had to organize their implementa-
tion and testing environments. For this purpose, each team was given their own
VMware virtual machine.The architects (in cooperation with other team mem-
bers) could choose their own operating system and development environment in
which they wanted to implement the system. The teams normally chose .NET
or J2EE as their development frameworks. One of architects in each team was
also responsible for maintenance and administration of the VMware machine.
The other architects were personally responsible for database management, web
page maintenance and keeping up-to-date the UML documentation of the whole
system. They created their own websites which integrated the whole documen-
tation of the project, most recent information and announcements. The website
played a crucial role as the second communication medium between students in
the team and complements the meetings during the classes. The website also
constituted a report deliverable for the whole project.

3 Teaching Results

The teaching results can be divided into three aspects: quality of produced sys-
tems and team work, quality of produced designs and student’s comprehension
of modeling. The first two aspects can be judged by the quality of deliverables
and generally by measuring how successful individual project teams were. To
measure the third factor we have prepared a post-course questionnaire.

Five years of experience in teaching the course leads to a general conclusion
that the proposed format proved to be quite successful. This success can be
measured by the fact that out of 32 project teams (12-15 students each) only
1 (throughout the five years) did not succeed in delivering the assigned system.
In all other cases the systems delivered were functional enough to pass most of
the prepared functional tests. It has to be noted though that in the first three
editions of the course, most of the teams did not deliver all of the required
functionality. Nevertheless, the students managed to deliver fully operational
systems with good user interface design.

The most important problem during classes was the organization of team
work. This was caused by the fact that the students were really not prepared
to work in a larger group. This was a totally new experience to them. For this
reason, the course gained an opinion of a “hard one” - one necessitating more

www.manaraa.com

308 R. Szmurło and M. Śmiałek

work from the students than an average course. Despite this, the students partic-
ipating in the course have shown high commitment and motivation. They were
additionally motivated to work by fellow students - project team members. The
teachers could notice that the project teams became real teams with good inter-
personal relationships. Only in some cases (2-3 teams out of 32) the team work
did not succeed. This was especially the case when the architectural group did
not perform well. It is thus crucial to have the architectural team being carefully
chosen by the project team with the help of the teacher.

Another issue is associated with poorly performing design teams. The course
format proved to be well suited to accommodate for such situations. None of the
projects so far suffered because of one of the design teams did not do their job
or did it too late. Vertical division of work made applications prepared by the
students quite independent. Even without one of the modules, the applications
could work simulating easily the lacking functionality.

Quality of team work is closely related to the quality of produced deliverables
(models). In the initial editions of the course the students were to deliver systems
with around 20 or more use cases. In the last two editions we have significantly
limited the number of required use cases (to even less than 10). This was caused
by noting that the students have sacrificed modeling when pressed by the dead-
lines, and concentrated mostly on coding. Lack of modeling caused poor quality
of the systems and later problems with testing. In the last editions, the teach-
ers have concentrated on enforcing proper modeling practices. This caused that
the teams produced better designs leading to easier integration of systems and
significantly less problems during testing.

A common problem in teaching modeling is how to motivate students to pro-
duce good quality models. Usually, they produce models that they later imple-
ment in code. The models are quite simple and the students feel that they could
develop the system faster if they could get rid of the “unnecessary pictures”
(which they have in their heads). To prevent this, in our course we have simu-
lated the process of exchanging design information between separate sub-teams.
In the second part of the course, the students were obliged to implement com-
ponents designed by another sub-team. This forced them to present and explain
their project to others. During this process both the presenting and the listening
team (under the teacher’s supervision) were gaining experience on the kind of
information that has to be included in the design. Additionally, the students
became aware of many obvious errors, mis-designs and shortcomings of their
projects.

Another problem is associated with the usage of modeling (UML) tools. Very
often, the students are taught to code the system first and then prepare the
documentation. Such habits could be noticed during the described course. Some
of the teams tried to reverse engineer their code in order to produce the required
design models. The teachers tried to prevent such practices by frequent inspec-
tions of code and models. On the other hand, many of the teams did not need
such inspections as they have noticed all the benefits of automatic code genera-
tion and kept code synchronized with the models without teacher’s intervention.

www.manaraa.com

Teaching Software Modeling in a Simulated Project Environment 309

The marking system developed for the course promotes the teams that keep
their designs up-to-date. However, we have noticed that even with this system
in place, the students needed additional motivation. This motivation was gained
through a systematic use of the CASE tool. The students realized that the tool
allows them to communicate design decisions and at the same time relieves from
the burden of writing the “uninteresting” parts of code (the code structure).

To measure some of the teaching results of the course, associated with the
student’s comprehension of modeling practices, we have prepared a questionnaire
to be filled by the students. In this voluntary, anonymous questionnaire, 75
students out of total 90, have participated. Students were to assign 1 to 5 points
for each statement, where 1 point meant: ‘I definitely disagree’ and 5 points ‘I
definitely agree’.

Most students taking the course accepted the innovative form of the laboratory
(4.0). The students had the opportunity of playing different roles in a realistic
environment. During the course the students could find a role that suits them
best. On the other hand, some of the students were quite sceptic about whether
they would like to take more of such courses due to amount of work the course
necessitates.

Answers to questions: “Good architecture design in UML helps to communi-
cate during the process of system development” (4.2) and “Application of CASE
tools is necessary in the process of software development” (4.2) have shown that
the students really appreciate modeling and the role of CASE tools as an im-
portant element of software development. On the other hand, they seem to be
more sceptic about applying the knowledge and experience they gained in real
life (“The course will allow me to integrate faster with a team building a real
system in the future", 3.6). This might be caused by their poor opinions on the
quality of software development process in an average software house. Answers
to question “The course have helped me to understand the process of system
implementation with UML." (3.7) show that the students were not totally satis-
fied with the outcomes of the course. Their additional opinions expressed when
discussing with the teachers show that they feel the course did not fully simulate
a real project. They also felt that too little stress was put on transforming UML
models into the technologies of their choice (.NET or J2EE).

4 Conclusions

Current curricula for software engineering courses seem to ignore the need to
prepare students for work in a real-scale software project. It can be argued that
this is caused by applying traditional approaches which concentrate on “fair”
assessment of individual students. This however is in contrast to the needs of the
industry. In the presented course we have tried to accommodate both the needs
of academia and the needs of industry. We try to simulate a real industry project,
at the same time introducing a system which allows for quite fair marking.

www.manaraa.com

310 R. Szmurło and M. Śmiałek

The course simulates just one (and a half) iteration of a real project. Experi-
ence shows that realistically, only up to 10 average use cases can be implemented.
This is due to the fact that the course can simulate just below two weeks of full
time work in a real project. Despite this limitation, the teams could produce a
reasonable system. Even in this limited lifecycle, the students gain the capability
to communicate with other members of their team through models. They also
gain experience in conducting project meetings, organizing team work. Most im-
portantly, the students really start appreciating modeling and the use of CASE
tools - not only as means of documenting the system but also as facilitators of
actual development process.

Acknowledgement

We wish to thank Sparx Systems for supplying us with their CASE tool system
(Enterprise Architect) for the purpose of this course.

References

1. Cooper, K., Dong, J., Zhang, K., Chung, L.: Teaching experiences with UML at
the University of Texas at Dallas. ACM / IEEE 8th International Conference on
Model Driven Engineering Languages and Systems, Educators’ Symposium (2005)
1–8

2. Filho, W.P.P.: A model-driven software process for course projects. ACM / IEEE
8th International Conference on Model Driven Engineering Languages and Sys-
tems, Educators’ Symposium (2005) 33–40

3. Śmiałek, M.: Zrozumieć UML 2.0. Metody modelowania obiektowego. Helion
(Poland) (2005)

4. Booch, G., Rumbaugh, J.: The unified modeling language user guide. WNT (2001)
5. Fowler, M., Scott, K.: UML distilled. WNT (2001)
6. Muller, R.J.: Database Design for Smarties: Using UML for Data Modeling. Mikom,

Warsaw (2000)
7. Szyperski, C.: Component Oriented Programming. WNT (2001)
8. Huo, M., Verner, J., Zhu, L., Babar, M.A.: Software quality and agile methods.

Proceedings of the 28th Annual International Computer Software and Applications
Conference (COMPSAC 04) (2004)

9. Lewi, J., Steegmans, E., Man, J.D.: Object-oriented approach to software devel-
opment, a walk through a number of topics. CompEuro 91 Advanced Computer
Technology, Reliable Systems and Applications 5th Annual European Computer
Conference. (1991) 626–633

10. Kuzniarz, L., Staron, M.: Best practices for teaching uml based software develop-
ment. ACM / IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, Educators’ Symposium (2005) 9–16

11. Enterprise Architect, Sparx Systems, http://www.sparxsystems.com.

www.manaraa.com

Repository for Model Driven Development (ReMoDD)

Robert France1, Jim Bieman1, and Betty H.C. Cheng2

1 Department of Computer Science and Engineering
Colorado State University

{france,bieman}@cs.colostate.edu,
http://www.cs.colostate.edu/{f̃rance,b̃ieman}

2 Department of Computer Science and Engineering
Michigan State University
East Lansing, Michigan
chengb@cse.msu.edu

http://www.cse.msu.edu/c̃hengb

Abstract. The Repository for MDD (ReMoDD) project is concerned with devel-
oping a repository that will contain artifacts that support research and education
in model-driven development (MDD). The ReMoDD platform will also provide
interfaces and interchange mechanisms that will enable a variety of tools to re-
trieve artifacts from the repository and submit candidate artifacts to the reposi-
tory. ReMoDD artifacts will include documented MDD case studies, examples of
models reflecting good and bad modeling practices, reference models (including
metamodels) that can be used as the basis for comparing and evaluating MDD
techniques, generic models and transformation reflecting reusable modeling ex-
perience, descriptions of modeling techniques, practices and experiences, and
modeling exercises and problems that can be used to develop classroom assign-
ments and projects. In this paper we outline plans for developing ReMoDD.

1 Introduction

MDD research targets the complex problem of developing software systems that play
critical roles in organizations and society. Researchers in the MDD community are de-
veloping techniques, methods, processes and tools that allow developers to raise the
level of abstraction at which they conceive, analyze, implement and evolve complex
software systems. The Repository for Model Driven Development (ReMoDD) project
is concerned with developing a community-driven repository that will contain artifacts
whose use can significantly improve MDD research productivity, improve industrial
MDD productivity, and enhance the learning experience of MDD students. Artifacts
will include detailed MDD case studies, examples of models reflecting good and poor
modeling practices, semantic models for UML diagrams, reference models that can be
used as points against which MDD techniques are compared and evaluated, model and
specification patterns, generic models reflecting reusable modeling experience, model
transformations, descriptions of modeling practices and experience, and modeling ex-
ercises and problems that can be used to develop classroom assignments and projects.

ReMoDD will publish an API (application program interface) that will allow a vari-
ety of tools to retrieve artifacts from the repository directly. For those who wish to use

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 311–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

312 R. France, J. Bieman, and B.H.C. Cheng

ReMoDD in a stand alone mode, we will develop web-based user interface software to
make the artifacts easily and intuitively accessible, both in terms of performance and
content. Specifically, we will develop software to present different views, browsing, and
query interfaces to the user depending on their needs and objectives. For example, one
type of user may be interested in finding all artifacts related to a specific domain (e.g.,
telecommunication systems). Another type of user may want to explore the available
design patterns with sample implementations. And yet another user may want a general
introduction to MDD and want to take a virtual tour through the different types of arti-
facts in the repository. We will need to investigate different types of storage media and
structural organization of artifacts to best support these types of views and query needs.

The initial development of ReMoDD will be a collaborative effort involving re-
searchers from Colorado State University (CSU) and Michigan State University (MSU).
The team will also work with members of the MDD community to collect and evaluate
candidate ReMoDD artifacts, as well as publicize the repository artifacts for dissemina-
tion purposes. An advisory board comprising MDD researchers and practitioners will
provide the guidance needed to ensure that ReMoDD becomes a sustainable resource
that significantly improves MDD research productivity and the quality and relevance of
educational material.

2 Goals, Objectives, Targeted Activities

The objective of the project is to develop a community resource that provides a single
point of access to shared artifacts reflecting high-quality MDD experience and knowl-
edge from industry and academia. The aim is to facilitate sharing of relevant knowledge
and experience that improve MDD research productivity and education.

We aim to collect and make available MDD artifacts from industry, academia, and
other public domain sources (e.g., artifacts produced by open-source projects). Items in
the repository will provide data for our research and will be a resource for the entire
MDD research and education community. Initially, ReMoDD will support research in
the following areas:

– Research on modeling languages and modeling approaches (e.g., research on
aspect-oriented modeling, model semantics).

– Research on model transformations.
– Research on model analysis techniques.
– Research on evaluating the quality of modeling artifacts.
– Empirical studies of modeling phenomena.
– Research on reusable forms of modeling experience (e.g., work on developing and

using domain-specific modeling languages, domain-specific modeling frameworks,
and patterns).

In the long-term we envisage that the repository will consist of related living archives
of software engineering artifacts including the MDD archive (ReMoDD) that will be
developed in this research. For this reason, the repository infrastructure that will be
developed to support ReMoDD will be architected so that it is not restricted to storing
and manipulating only MDD artifacts.

www.manaraa.com

Repository for Model Driven Development (ReMoDD) 313

Ensuring Relevance to the MDD Community. We will use two mechanisms to help en-
sure that the community resource we develop meets the needs of the MDD community:
A project Advisory Board and a series of Repository Development Workshops (RDWs).

An Advisory Board comprising national and international MDD researchers and
practitioners will provide the oversight needed to ensure that the repository provides
the MDD artifacts that are highly relevant to the MDD community. Letters indicating
the willingness of elected members to serve on the advisory board are included with this
proposal (see Letters in Supplementation Section). By agreeing to serve on this board,
means that a member is committing to providing feedback on the design of the reposi-
tory, evaluating candidate artifacts, contributing artifacts, and publicizing the ReMoDD
repository. The following is a list of persons who have agreed to serve on the Advisory
Board:

Academia Members
Joanne Atlee , University of Waterloo, Canada
Don Batory , Univ of Texas - Austin, USA
Jean Bezivin , University of Nantes, France
Lionel Briand, Carleton University, Canada
Doris Carver , Louisiana State University, USA
David Garlan , Carnegie Mellon University, USA
Jeff Gray , University of Alabama at Birmingham, USA
Mark Harman , Kings College, UK
Jean-Marc Jezequel , IRISA/INRIA, France
Kevin Lano , Kings College, UK
Robyn Lutz , Iowa State University and NASA JPL, USA
Atif Memon , University of Maryland, USA
Spencer Rugaber , Georgia Tech, USA
Perdita Stevens , University of Edinburgh, UK

Industrial Members
Michael Barnett , Microsoft Research, USA
Brian Berenbach , Siemens Corporate Research, Worldwide
Roger Burkhart , Deere & Company, USA
Alexander Egyed , Teknowledge, USA
Luis Pereira , Eaton Innovation Center, Worldwide
Bran Selic , IBM, Canada
Frank Weil , Motorola, Worldwide

Research Development Workshops (RDWs) will give members of the general MDD
community opportunities to interact with the project team and thus influence the de-
velopment of ReMoDD and its mission. The workshops will be held biannually at
two major conferences: ICSE (International Conference on Software Engineering) and
MoDELS (Model Engineering Languages and Systems). In the early phases of the
project, the workshops will focus on eliciting requirements from the community (new
and seasoned developers and researchers) and on reviewing the ReMoDD design. Later

www.manaraa.com

314 R. France, J. Bieman, and B.H.C. Cheng

workshops will focus on (1) developing and discussing artifacts that will be used to
seed the repository, (2) demonstrating how researchers and educators can interact with
ReMoDD and (3) soliciting feedback that will be used to assess the effectiveness of
ReMoDD and to improve the repository.

Impact of ReMoDD on Research and Education. ReMoDD will (1) provide research
projects with artifacts such as models, model transformations, and code on which re-
search products can be applied, (2) facilitate comparative analyses of experience related
to MDD, (3) provide raw data on MDD artifacts, technologies, and practices to research
programs, (4) support efforts related to collecting empirical data about modeling tech-
niques, technologies and notations, and about implemented systems, (5) provide educa-
tors with materials that can be used in software engineering courses that cover MDD,
and (6) be used to communicate MDD successes and failures to the software develop-
ment community.

Impact on Standards Bodies. In addition, we envision that ReMoDD will also play
a role with the standards bodies. The experience and knowledge captured by artifacts
in the repository can be used by developers of MDD standards to shape standards and
to illustrate application of the standards. The repository can also help promote use of
standards through sharing of artifacts that conform to standards, and can help with the
evolution of standards by providing information (e.g., experience reports, quality eval-
uations) that can be used to determine the effectiveness of the standards.

3 Project Description and Infrastructure

In this section we present our vision of the ReMoDD infrastructure. We anticipate that
the initial view presented in this section will be modified and elaborated during the
project based on results of a requirements analysis that will be carried out in the early
phases of the project and on feedback we gather from the MDD community.

3.1 Core ReMoDD Content-Related Concepts

To support the short-term MDD-specific goals and the long-term software engineering
repository goals we have based ReMoDD on the following content-related concepts:
Artifact, artifact relationship, and artifact cluster. Basing ReMoDD on these generic
concepts makes it possible to use the repository to store a variety of artifacts.

An artifact is an information item that can be retrieved from the repository. It can
be simple or complex. A simple artifact is the smallest unit of information that can be
accessed within the repository. It is a set of tightly-coupled elements that is stored and
retrieved as a non-decomposable unit in the repository. Examples of simple artifacts are
UML class descriptions, UML relationships, Java programs, metamodels, test cases,
and method descriptions. Each artifact has a type that contains metadata about the arti-
fact and that specifies the kinds of manipulations that can be carried out on the artifact.
The kinds of manipulations supported by an artifact can be described in terms of an
interface that specifies allowable operations in terms of their signatures and constraints

www.manaraa.com

Repository for Model Driven Development (ReMoDD) 315

on their behavior. Users of the repository can use the metadata in artifact types to de-
termine the quality of the artifacts and the tools needed to manipulate the artifacts once
they are retrieved from the repository. For example, the type of a source code artifact
can include metadata that gives the programming language used to express the artifact,
the version and author of the artifact, and provides information on the quality of the
code (e.g., complexity metrics). It can also contain specifications of interfaces for an-
alyzing, compiling, testing, and executing the code. An artifact type can also specify
data integrity and access control rules that are applicable to all artifacts of the type.
These rules can restrict the form of the artifacts and how they are accessed within the
repository.

3.2 The ReMoDD Development Plan

The ReMoDD project activities are structured into the following phases:

Project Startup: Activities in this phase will be primarily concerned with soliciting
and analyzing detailed requirements from the MDD community and with develop-
ing a repository architecture that provides a balanced solution.

Repository Design and Implementation: The primary activities in this phase concern
designing, implementing and testing the repository.

Repository Seeding: The primary activities in this phase concern collecting, packag-
ing, and storing MDD research and education artifacts that will be shared via Re-
MoDD.

Repository Deployment: The activities in this phase are primarily concerned with
making the repository available to the MDD community and training of potential
users.

Repository Evaluation: The activities in this phase are primarily concerned with eval-
uating the effectiveness of the ReMoDD infrastructure and the use of its seed con-
tents.

The Planning Grant will largely focus on the Project Startup and Repository Seeding
efforts, both of which will be described in the Future Work section.

4 Evaluation

For the planning grant, the following evaluation activities are planned.

– Evaluation of the software interface for the repository will be performed. Pro-
totype interfaces for the key elements of ReMoDD will be developed and made
available to the Advisory Board members as well as our collaborators. The objec-
tive of this evaluation step is to determine what types of interactions will be most
useful for ReMoDD users. An iterative process will be used to gather feedback and
refine the interfaces appropriately. RDWs at ICSE and MoDELS conferences will
be used to gather more concentrated feedback regarding the interfaces.

– Evaluation of the artifacts in the repository. As part of the seeding efforts, we
will identify representative artifacts to be placed in ReMoDD. As part of the ini-
tial requirements phase, we are soliciting input from stakeholders as to what types

www.manaraa.com

316 R. France, J. Bieman, and B.H.C. Cheng

of artifacts are the most in demand for researchers and educators. Based on this
feedback, we will collect appropriate artifacts from researchers, educators, and in-
dustrial collaborators. Once placed in a prototype repository with our prototype
interfaces, we can then evaluate both the interfaces and the artifacts and determine
what types of metadata are needed to make the artifacts the most useful.

5 Outreach

The inherent nature of the ReMoDD project is outreach to the research and educational
communities. In addition to the Advisory Board members, we have a list of twenty col-
laborators from industry and universities who are interested in using and contributing to
ReMoDD. To increase the scope of outreach, we are also working with several minor-
ity institutions to engage minority faculty and students in MDD research and education.
The full proposal describes activities to leverage the contacts by the 3 PIs in HBCUs
and other minority institutions to support underrepresented minority undergraduate stu-
dents in MDD-related research projects. Special effort will be made to involve educa-
tional institutions with predominantly minority students in the development and use of
the repository. The institutions with software engineering research and teaching fac-
ulty will be contacted directly and invited to participate in the Repository Development
Workshops (RDWs). Finally, we have identified several global software companies who
are enthusiastically interested in participating and contributing to ReMoDD. In many
cases, the PIs have long-standing relationships with these companies, where industrial-
strength data and projects have been shared with their respective universities. As such,
the plan is to leverage these partners to gain additional industrial partners.

6 Future Activities

The planning grant is just now beginning. As such, our efforts will focus on the require-
ments elicitation for the project and the the preliminary seeding of the repository.

Project Startup. The following are the major activities in this phase:

– Establish the project Advisory Board.
– Elicit and analyze requirements for the repository.

At the start of the project we will hold a meeting with members of the Advisory
Board to discuss initial project plans and to establish protocols that specify how the PIs
will interact with the board. It is expected that the PIs will meet with the board members
at least twice a year to discuss progress. These meetings will be held at the ICSE (May
annually) and MoDELS (October annually) meetings. An online mailing list will also
be set up to facilitate communication with board members.

Elicitation and analysis of repository requirements is the major activity in this phase.
At the start of the project we will conduct a survey that will help us determine the
types of artifacts that MDD researchers and educators would like to access in an open
repository. We will use the mailing lists of the MoDELS conference, the OMG and other
MDD related groups to distribute the survey, and provide online survey instruments.

www.manaraa.com

Repository for Model Driven Development (ReMoDD) 317

To facilitate the elicitation activity the PIs will organize a Repository Development
Workshop (RDW) at the MoDELS conference, which is due to take place shortly after
the start of the project. The objective of the RDW would be to elicit requirements and
discuss requirements with members of the MDD community. Members of the MDD
community will present and discuss their requirements for the repository. The PIs will
meet after these meetings to analyze the feedback and plan future requirements and
early design activities.

Repository Seeding. The following are the major activities in this phase:

– Seed the repository from the MDD models used to develop ReMoDD.
– Seed the repository with artifacts from PIs projects.
– Seed the repository with artifacts from Advisory Board members.

This phase is intended to provide an initial population of the repository to assess
how well the clusters we initially identified are suited to shareable artifacts. During this
phase, we will also determine the types of manipulations that should be allowed on
artifacts. This will help us determine the types of tools that should be either directly
brought into the system or made pluggable into the client version of the system. For
example, when browsing a collection of design patterns, should a user be able to click
on a pattern, bring up the list of fields, and then pull up a UML diagram editor to begin
editing one of the templates in the pattern?

The initial seeding of the repository will also help us to assess whether our criteria for
simple and complex artifacts need to be modified, or whether we need another category
of artifacts. Given that several of our advisory board members are from industry or
work with industry, we will be able to explore scalability issues in terms of volume
and complexity of artifacts. At the conclusion of the initial seeding phase, we will have
examples of all the key types of artifacts that we plan to support (e.g., requirements,
design, implementation, testing models, code for models, transformations, metamodels,
and patterns). During the remainder of the project, we will continue to solicit additional
artifacts from the community to submit to the repository. Our RDW will provide one
means for soliciting artifacts. We will also send out announcements to the community
soliciting additional artifacts. A software module will be developed to provide an easy
means for users to submit candidate artifacts. All artifacts will be evaluated for their
integrity by members of the ReMoDD team before being added to the repository.

www.manaraa.com

2nd UML 2 Semantics Symposium:
Formal Semantics for UML

Manfred Broy1, Michelle L. Crane2, Juergen Dingel2,
Alan Hartman3, Bernhard Rumpe4, and Bran Selic5

1 Technische Universität München, Germany
2 Queen’s University, Kingston, Ontario, Canada

3 IBM Research, Israel
4 Technische Universität Braunschweig, Germany

5 IBM Rational Software, Canada
broy@in.tum.de,crane@cs.queensu.ca,dingel@cs.queensu.ca,
hartman@il.ibm.com,b.rumpe@tu-bs.de,bselic@ca.ibm.com

http://www.cs.queensu.ca/~stl/internal/uml2

Abstract. The purpose of this symposium, held in conjunction with
MoDELS 2006, was to present the current state of research of the UML 2
Semantics Project. Equally important to receiving feedback from an au-
dience of experts was the opportunity to invite researchers in the field
to discuss their own work related to a formal semantics for the Unified
Modeling Language. This symposium is a follow-on to our first workshop,
held in conjunction with ECMDA 2005.

Keywords: UML, Formal Semantics.

1 Introduction

The UML 2 Semantics Project is an international collaboration, involving both
academia and industry. Participants include IBM (Canada, Germany, and Is-
rael), Queen’s University (Kingston, Ontario, Canada), the Technical University
of Munich (Germany), and the Technical University of Braunschweig (Germany).
The main objective of this project is to develop a mathematically formalized
semantics definition for the Unified Modeling Language (UML). The Project
started in January 2005 and has achieved substantial results. That said, there is
much work to be done and the project will likely continue for at least one more
year.

The purpose of this symposium, held in conjunction with MoDELS 2006, was
to present the current state of our research to an audience of experts. Equally
important to receiving feedback on our research, this symposium was an opportu-
nity to invite researchers in the field to discuss their own work. This symposium
is a follow-on to our first workshop, held in conjunction with ECMDA 2005, in
Nuremberg, November 2005.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 318–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

2nd UML 2 Semantics Symposium: Formal Semantics for UML 319

2 Motivation

UML has become the language of choice for modeling various aspects of software
systems in academia and industry. UML is now widely adopted in academia and
industry and has established itself as the dominant language for modeling soft-
ware systems. UML 2 [12] is the latest major revision of UML and has been
developed with the help of researchers and practitioners from numerous com-
panies, universities, and government institutions. UML 2 addresses the short-
comings of the previous version and incorporates the advances distilled from a
large body of research and practical experience. The current version of the stan-
dard specifically supports model-driven development (MDD), an approach to
software development that has the proven potential to increase the productivity
of industrial software development substantially. In short, MDD focuses on the
construction of platform-independent, high-level models from which source code
is automatically generated.

The current UML 2 specification is complex and uses a combination of semi-
formal diagrams, constraints, and informal natural language text. The impreci-
sions and ambiguities of natural language make it difficult to detect and correct
subtle errors, incompleteness, and inconsistencies. These problems in turn com-
plicate the development of tools supporting UML. For instance, tool builders
may not find the amount of detail in the standard necessary, for the implemen-
tation of a particular analysis or translation. In addition, the interoperability
between UML tools is compromised, because different tools may interpret the
same artifact differently, such that the combined use of these tools may not
yield consistent results. The high-level goal of this project is to overcome such
problems, and to improve the standard and enhance the technical viability and
benefits of MDD and UML.

The proposed formalization of UML will have several benefits. First, it will
allow subtle errors in the current and future versions of the standard to be de-
tected and suggestions for improvements to be made. Second, the formalization
will have the potential to be of immediate, commercial utility to the companies
developing tools supporting UML and MDD. For instance, it would enable tool
vendors to develop tools that offer more powerful and effective testing, analy-
sis, and model transformation functionality and better support the exchange of
modeling artifacts between different tools.

3 The Semantics Architecture

The focus of the Project has been driven primarily by the concepts discussed
in [13], especially the semantics architecture. Figure 1 identifies the key semantics
areas covered by the current UML 2 standard.

At the highest level of abstraction, it is possible to distinguish three distinct
layers of semantics. The foundation layer is structural, reflecting the premise that
there is no disembodied behaviour in UML – all behaviour emanates from the

www.manaraa.com

320 M. Broy et al.

actions of structural entities. This structural layer is represented by our System
Model, discussed in Section 4.

The next layer is behavioural and provides the foundation for the semantic
description of all higher-level behavioural formalisms. This layer is called the
Behavioural Base and consists of three separate sub-areas arranged into two
sub-layers. The bottom sub-layer consists of the inter-object behaviour base,
which deals with how structural entities communicate with each other, and the
intra-object behaviour base, which the relationship between structural entities
(e.g., objects) and their behaviour. The system model also formalizes these con-
cepts. The actions sub-layer is placed over these two; it defines the semantics
of individual actions and the means by which actions are composed to form
more complex behavioural specifications. Actions are the fundamental units of
behaviour in UML and are used to define fine-grained behaviour. As discussed
in Section 5, one current document in the project is dedicated to formalizing
these actions in terms of the system model.

Actions are available to any of the higher-level formalisms to be used for
describing detailed behaviours. The topmost layer in the semantics hierarchy
defines the semantics of the higher-level behavioural formalisms of UML: ac-
tivities, state machines, and interactions. These formalisms are dependent on
the semantics provided by the lower layers. Currently, research is being done on
formalizing activities and interactions in terms of the system model.

Fig. 1. The UML semantics layers: the Semantics Foundation consists of the bottom
two layers – the Structural Foundations and the Behavioural Base [13]

4 System Model

The goal of the System Model is to provide a semantic domain into which
UML specifications can be mapped [10]. In our case, the semantic domain is

www.manaraa.com

2nd UML 2 Semantics Symposium: Formal Semantics for UML 321

mathematics, specifically: numbers, sets, relations and functions. The notation is
drawn from pure mathematics, as opposed to some other specialized, or invented,
notation.

The system model defines a universe of interacting state machines that de-
scribe the behaviour of objects and their relationships with each other. It pro-
vides the means to define the semantics of any UML model. Intuitively, each
state in the system model is composed of three parts, data store, control store
and event store, and represents the states that the system being modelled moves
through during its execution. Further information about the system model is
detailed in the various documents listed in Section 5.

5 Status

Several major objectives were determined at the outset of the project:

1. To specify a definitive and complete formal semantics foundation for the
UML 2 standard. At this point, approximately two-thirds of the semantics
foundation has been finalized. This foundation, called the System Model is
composed as follows:

– Towards a System Model for UML: The Structural Data Model [3], which
defines the structure part of the system model, including concepts such
as class, reference, method, etc.

– Towards a System Model for UML: The Control and Scheduling [2],
which defines the control part of the system model, including concepts
such as stack, frame, thread, message, etc.

– Towards a System Model for UML: The State Transition System, which
defines the dynamic behaviour of the system model.

These three documents introduce a system model as the basis for a semantic
model for UML 2. The system model forms the core and foundation of the
UML semantics definition. Building upon this system model are several other
documents:

– Class Diagrams: Abstract Syntax and Mapping to System Model [5],
which expresses a subset of UML class diagrams in terms of a tuple
notation and then maps this structure to the system model.

– Activity Diagrams: Abstract Syntax and Mapping to System Model [7],
which expresses a subset of UML activity diagrams in terms of a tuple
notation and then maps this structure to the system model.

– Mapping Actions to the System Model [4], which examines several of the
UML “primitive” actions, such as CreateObjectAction, CallOperationAc-
tion, etc. The behaviour of these actions is expressed in terms of changes
to the system model.

– Mapping Activities to the System Model [6], which examines the fun-
damental nature of activities, e.g., tokens, flow, how activities can be
composed, etc. The result of activity execution is expressed in terms of
the system model.

www.manaraa.com

322 M. Broy et al.

At this point in time, the documents listed above are available in unpub-
lished format only. The most current version of each document may be found
online [1].

2. To identify potential consistency flaws in the UML 2 standard and propose
adequate corrections. Several subtle inconsistencies and flaws in the standard
have been found over the past 18 months - these have been forwarded to the
appropriate authors, who have raised issues when appropriate.

3. To identify analysis techniques that can be used to formally determine the
correctness of UML 2 models. These techniques would enable tool vendors
to develop tools that offer more powerful and effective testing, analysis, and
model transformation functionality and better support the exchange of mod-
eling artifacts between different tools. To date, that has been little progress
on this objective, although it remains a high priority for future work.

4. To provide a strong foundation for the definition of a UML virtual machine
that is capable of executing UML 2 models. Progress on this objective is
being made on two fronts:
– Dr. Alan Hartman’s group at IBM Haifa, Israel has created a generic

model execution engine [11] on top of which a UML simulator for activ-
ity diagrams and state machines has been implemented. The simulator
allows modellers to step through their models in an interactive fashion
and thus gain a better understanding of their behaviour.

– Simultaneously, research is carried out to use the system model as the
basis of an execution and analysis engine. The goal of this work is to
refine the system model and to pave the way towards a more powerful
analysis platform based directly on our formal semantics of UML.

Cross-pollination between these two initiatives is expected to benefit both.

In addition to these primary objectives, research has been conducted on these
related topics: clarification of complicated or new aspects of UML, e.g., associ-
ations [8], package merge [15,14], and generic model management [9].

6 Future Work

The original project mandate was for two years. We have made significant
progress in that period of time. Although there is much more research to be
done, we are anticipating the continuation of this project for at least one more
year. Regardless, the majority of the system model is nearly complete and can
be used in future research. More specifically, work on mapping the actions and
activities to the system model will be continued.

Acknowledgments. This research is supported by Communications and Infor-
mation Technology Ontario, the IBM Centers for Advanced Studies, the Tech-
nische Universität München, and IBM Germany.

www.manaraa.com

2nd UML 2 Semantics Symposium: Formal Semantics for UML 323

References

1. UML 2 semantics project web page.
http://www.cs.queensu.ca/∼stl/internal/uml2,2006.

2. M. Broy, M.-V. Cengarle, and B. Rumpe. Towards a system model for UML: The
control and scheduling model. Draft - Verson 0.7, Oct 2006.

3. M. Broy, M.-V. Cengarle, and B. Rumpe. Towards a system model for UML: The
structural data model. Version 1.0, 4 June 2006.

4. M.L. Crane and J. Dingel. Mapping actions to the system model. Draft - Version
0.0, Oct 2006.

5. M.L. Crane, J. Dingel, and Z. Diskin. Class diagrams: Abstract syntax and mapping
to system model. Draft - Version 1.7, Sep 2006.

6. M.L. Crane, J. Dingel, and Z. Diskin. Mapping activities to the system model.
Draft - Version 0.0, Oct 2006.

7. J. Dingel, M.L. Crane, and Z. Diskin. Activity diagrams: Abstract syntax and
mapping to system model. Draft - Version 0.0, Mar 2006.

8. Z. Diskin and J. Dingel. Mappings, maps and tables: Towards formal semantics
for associations in UML2. In Proceedings of the 9th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2006), volume 4199
of LNCS, pages 230–244. Springer, 2006.

9. Z. Diskin and J. Dingel. A metamodel independent framework for model transfor-
mation: Towards generic model management patterns in reverse engineering. In
3rd International Workshop on Metamodels, Schemas, Grammars, and Ontologies
for Reverse Engineering (ATEM 2006), 2006.

10. David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics
of “semantics”? IEEE Computer Magazine, 37(10):64–72, 2004.

11. A. Kirshin, D. Moshkovich, and A. Hartman. A UML simulator based on a generic
model execution engine. In Proceedings of the 20th European Conference on Mod-
elling and Simulation (ECMS 2006), 2006.

12. OMG. Unified Modeling Language: Superstructure version 2.0. Document
formal/05-07-04, Object Management Group, 2005.

13. B. Selic. On the semantic foundations of standard UML 2.0. In M. Bernardo
and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems
(SFM-RT 2004), volume 3185 of LNCS, pages 181–199. Springer, 2004.

14. A. Zito and J. Dingel. Modeling UML2 package merge with Alloy. In First Alloy
Workshop, Portland, Oregon, USA, November 2006. (to appear).

15. A. Zito, Z. Diskin, and J. Dingel. Package merge in UML 2: Practice vs. theory?
In Proceedings of the 9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2006), volume 4199 of LNCS, pages 185–199.
Springer, 2006.

http://www.cs.queensu.ca/~stl/internal/uml2, 2006.

www.manaraa.com

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 324 – 326, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A UML Simulator Based on a Generic Model Execution
Engine

Andrei Kirshin, Dolev Dotan, and Alan Hartman

IBM Haifa Research Lab, Haifa University Campus, Mount Carmel, Haifa, 31905, Israel
{kirshin, dotan, hartman}@il.ibm.com

Keywords: Model Execution, Model Simulator, Model Debugger, UML, State
Machines, Activities.

We implemented a generic model execution engine. The engine provides mechanisms
for the realization and the execution of behavioral semantics, and the control and
observation of model behavior. We used this generic execution engine to implement a
UML Model Simulator. It is designed as an extension to Rational Software Architect
(RSA), adding execution and debugging capabilities.

UML Simulator

Rational Software
Architect (RSA)

Eclipse platform

UML Execution Extensions

Generic model execution engine

Simulation
Trace

Behavioral
Model

Activity State Machine Voice Profile

The current version of the UML Model Simulator supports UML classes and
primitive data types, and focuses on the execution of activities and state machines. It
also supports Java as an action language. Profiles can be used to add domain-specific
behavior of a UML element, by applying stereotypes to UML elements. The tool can
be extended to support the execution of models that conform to a specific profile.

The UML Model Simulator provides a wide range of debugging capabilities:

• It supports the most commonly used execution modes such as step-wise
execution and run to breakpoint.

www.manaraa.com

 A UML Simulator Based on a Generic Model Execution Engine 325

• It allows dynamic object creation. Object here can be an instance of a class, an
activity, or a state machine. After the creation the user can execute behaviors
and invoke operations.

• It allows run-time observation of an object’s attribute values.
• It allows run-time observation of a behavior’s state – visualization of the

current state of a running state machine, currently enabled transitions, signals
in the data pool, and activity token offers.

We extended RSA with a Model Debugging perspective that contains various
views. Model Explorer view. This is the corresponding RSA view with the addition
of two items to the popup-menu: Debug Model is used to start a model debugging
session, and Add Breakpoint can be applied to any runnable element of the model.
Debug view. This view is responsible for control of the execution process (starting,
stopping, and step mode execution), object creation and destruction, observing the
values of objects’ attributes, and invoking the operations on the objects. Call Stack
view. This view shows all running behaviors organized according to the call history.
Signal Pool view. This view shows the signals waiting in the signal pool of each
running behavior. I/O view. This view allows signals to be sent to running behaviors
and shows the signals sent from the behaviors to the environment. Ready view. This
view shows all elements that are ready for execution and all elements that have
reached breakpoints. The user can select the next element for execution.
Breakpoints view. This view lists all active breakpoints. Diagram Animation. This
powerful feature builds a visual representation of the execution behavior.

When running an activity, the user can see which nodes are ready for execution
(green), which edges pass tokens (blue), or which node provides the token
(magenta).

When running a state machine, the user can see the current state (magenta), and the
enabled transitions (green).

www.manaraa.com

326 A. Kirshin, D. Dotan, and A. Hartman

www.manaraa.com

Queries and Constraints: A Comprehensive
Semantic Model for UML2

Ingolf H. Krüger and Massimiliano Menarini

University of California San Diego
9500 Gilman Drive, MC 0404
La Jolla, CA 92093-0404, USA

{ikrueger,mmenarini}@ucsd.edu

Keywords: Semantics, UML, UML2, Model-based Development, Soft-
ware Architecture, Programming Languages.

UML and UML2 are the de facto industry standards for model based software
development. To deliver the benefits promised by model based development, in-
cluding sophisticated synthesis and validation tool support, UML2 must have
a precise and formally defined semantics. While there have been attempts at
defining semantics for individual description techniques in the past, a unifying
semantics approach covering the information represented by all UML2 descrip-
tion techniques has proven elusive so far. In this contribution we turn the picture
around: we define a semantic core-model of distributed, reactive systems and
interpret UML2’s description techniques as queries and constraints at instantia-
tions of this core model. A query selects the elements relevant for a specification.
A constraint imposes structural and behavioral properties on the system under
consideration.

The Abstract Specification Universe. To provide a unifying semantics for UML2
specifications we first need to define what the family of systems we intend to
specify looks like. For this reason our first goal is to describe the core elements
of the abstract universe that is the root of our semantic framework. We focus on
the following elements: Entities, Channels, Messages, and Properties. This will
allows us to talk about a clean and concise mathematical model for distributed,
embedded, reactive, reconfigurable systems. Each system is made of two main
elements capturing the structure of a system, namely Entities and Channels,
and two elements capturing behavior, Messages and Properties. Entities have
computational capabilities and can communicate with one another by means
of channels. Channels connect arbitrary sets of entities. Entities connected to a
given channel can send messages on it. All entities that are listening on the chan-
nel will receive these messages. Messages are the means of communication of our
target system. The sequences of messages exchanged capture part of the behav-
ior of the system. The other part of the behavior is captured by the sequence of
values Properties assume during execution. In our model, Properties are named
function parameters. Examples of Properties are: variables of a program code,
sensor readings (such as the temperature read by a temperature sensor), and
more complex system-level properties (such as the position of a train in the

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 327–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

328 I.H. Krüger and M. Menarini

railroad system). Even system structure itself can be interpreted as a Property.
Each Property can be used in function calls by the various Entities. At every
instant it is possible to determine the value of a given Property in the context of
a specific Entity by using the Property as a parameter for the Boolean functions
it can appear in.

Queries and Constraints. The central idea of our semantic model for UML2 is
that each specification (diagram or text) expressed in one of the UML2 languages
can be understood as the contribution of two specification elements of our se-
mantic framework: Queries and Constraints. A Query is a guard over the values
of properties and the message history of channels; it determines if a particular
Entity (of the execution space) is selected to be constrained by the respective
UML2 artifact. A Constraint enforces a behavior of the system: it imposes that
a message is or is not sent by the selected entity and it constrains the prop-
erties of the entity in the next system state. The semantic space of our model
is, therefore, based on the notion of state that arises from the messages present
on all communication channels at a given instant and from the valuation of all
functions over the named Properties for each Entity. A sequence of states is a
run of the system. The Query and Constraint semantics allows only runs such
that for each state in which some Query is satisfied the next state fulfills the
corresponding Constraints.

Mapping to UML2 Languages. The UML2 standard defines thirteen graphical
and a textual languages. To show the power of the concept of Queries and Con-
straints as underlying semantic foundation for UML we sketch a possible inter-
pretation of two of them. First let us examine how such an interpretation could
be carried out for a language describing the behavior of a program: the state
machine diagram. In this case the language is made of states, transitions, and
operators (AND/OR). A suitable Query in such a case could use the state name,
or would select all components that share a particular Property – to show shared
state transitions in communication protocol, for instance. A Boolean function
stateis having as parameter the state name returns true in case the current state
is the one named in the parameter. A Constraint would be that the next value
of the properties is such that stateis would return true only on the target state
of an enabled transition for the current state. Another interesting example is
the mapping of a deployment diagram. This time the constraints must enforce a
particular structural arrangement of the target system. To achieve this goal we
can simply encode the structure of the system using Properties. For instance,
the programs to run on each node are identified by Properties encoding the pro-
gram names. The behavior of each program is defined by having in each Query,
used in the specification of the program, and additional guards on the program
name (for instance isrunning(ProgramName)). The mapping is achieved by as-
signing the program name Properties to the entities representing network nodes.
This strategy of specification has the additional benefit of allowing easy recon-
figuration at runtime by means of changing Properties. Utilizing queries and
constraints in this way yields significant flexibility in defining UML2 semantics.

www.manaraa.com

Analysis of UML Activities with
Dynamic Meta Modeling Techniques

Christian Soltenborn and Gregor Engels

Dept. of Computer Science, University of Paderborn,
Warburger Straße 100, 33098 Paderborn, Germany

{christian|engels}@uni-paderborn.de

Abstract. Based on a semantics of UML Activities specified with the
Dynamic Meta Modeling approach, we analyze the dynamic semantics
of Activities at modeling time.

Keywords: UML, semantics, behavior, verification, DMM.

1 Motivation and Background

Measuring the quality of models should be an important part of the model-driven
approach (MDA): If models are treated as first-class elements, they obviously
should not contain any serious flaws. However, manually analyzing complex mod-
els is not feasible. Therefore, the goal must be to provide tool support for the
modeler which assists her in identifying errors, inconsistencies etc. within the
model. One requirement for this is that the semantics of the modeling language
is defined formally.

To define semantics for behavioral modeling languages like UML Activities, we
propose the use of the Dynamic Meta Modeling (DMM) approach [1]. DMM was
developed with two requirements in mind: A DMM based semantics specification
should not only be formal, but also easily understandable. DMM fulfills both
requirements by using typed graphs and graph transformation rules (GTRs)—
which both have visual representations—as the underlying formalisms.

The idea of DMM is as follows: First, to be able to express states of execution,
the meta model of the target language is enhanced with appropriate concepts
(in the case of UML Activities, these are mainly a Token and an Offer class);
instances of the enhanced meta model are then mapped to typed graphs. Second,
GTRs are defined which describe how those typed graphs change in time (i.e.,
how tokens and offers flow through the Activity).

2 Analysis of DMM Based Semantics

A DMM specification yields a labeled state-transition-system (STS): A model
instance (in our case, a concrete Activity) is mapped to the start state of the
STS, and a transition occurs whenever a GTR can be applied to a state to derive
a new state. That transition is labeled with the applied rule.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 329–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

330 C. Soltenborn and G. Engels

Fig. 1. Chain of tools

Dynamic properties of the diagram can then be verified by investigating the
resulting STS. For this, we have utilized the GROOVE tool set [2], which pro-
vides not only a generator to compute an STS based on a start graph and a set
of GTRs, but also a model checker for that STS.

Figure 1 shows the complete workflow: In a first step, the semantics of the
language under consideration is defined, yielding an enhanced meta model. Using
it, dynamic properties the modeler is interested in can be edited. The semantics
definition and the properties are used at model time to translate a concrete
UML model into a start graph, a set of GTRs and some CTL expressions. These
fragments then serve as input for the GROOVE tool set. Finally, the result of the
model checker can be used to improve the model. A more thorough description
of the process can be found in [3].

3 Conclusion

The DMM approach in conjunction with the GROOVE tool set enables us to
check dynamic properties of UML Activities at modeling time. Thus, our ap-
proach allows the formal definition of a UML semantics as well as the analysis
of dynamic properties of UML diagrams.

References

1. Hausmann, J.H.: Dynamic Meta Modeling. PhD thesis, University of Paderborn
(2005)

2. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In: Ap-
plications of Graph Transformations with Industrial Relevance (AGTIVE). Volume
3062 of Lecture Notes in Computer Science., Springer-Verlag (2004) 479–485

3. Soltenborn, C.: Analysis of UML Workflow Diagrams with Dynamic Meta Modeling
techniques. Master’s thesis, University of Paderborn (2006)

www.manaraa.com

Author Index

Abd-El-Razik, Mohamed 193
Alam, Muhammad 278
Aldawud, Omar 1
Altenhofen, Michael 169
Altmanninger, Kerstin 263
Arévalo, Gabriela 277

Batory, Don 6
Baudry, Benôıt 179
Bencomo, Nelly 227
Berkenkötter, Kirsten 159
Berteau, Guillaume 32
Bieman, Jim 311
Blair, Gordon 227
Bödcher, Alexander 101
Botterweck, Goetz 106
Broy, Manfred 318

Cazzola, Walter 1, 17
Charland, Philippe 56
Chaudron, Michel R.V. 91
Cheng, Betty H.C. 311
Chiorean, Dan 152
Costa, Fábio Moreira 232
Crane, Michelle L. 318

Demeyer, Serge 91
Demuth, Birgit 152
Dingel, Juergen 318
Dotan, Dolev 324
Du Bois, Bart 91
Dubus, Jérémy 242

Elrad, Tzilla 1
Engels, Gregor 182, 329

Favre, Jean-Marie 52
France, Robert 27, 227, 311

Gall, Harald 80
Garcia, Miguel 66
Gašević, Dragan 52
Georg, Geri 27
Gérard, Sébastien 126
Giese, Holger 252

Gogolla, Martin 152
Graf, Susanne 126
Gray, Jeff 1
Güldali, Baris 182

Haarslev, Volker 56
Halvorsen, Oddleif 131
Hartman, Alan 318, 324
Haugen, Øystein 126, 131
Hearnden, David 179
Hettel, Thomas 169
Houmb, Siv Hilde 27
Hußmann, Heinrich 101

Jürjens, Jan 27

Kaltz, J. Wolfgang 116
Kienzle, Jörg 1
Kirshin, Andrei 324
Knapp, Alexander 42
Krüger, Ingolf H. 327
Küster, Jochen M. 80, 193
Kusterer, Stefan 169
Kuzniarz, Ludwik 76, 288

Lämmel, Ralf 52
Lange, Christian F.J. 91, 211
Levendovszky, Tihamér 252
Lohmann, Marc 182
Lohmann, Steffen 116
Lopez-Herrejon, Roberto E. 6
Lundqvist, Kristina 32

McQuillan, Jacqueline A. 217
Menarini, Massimiliano 327
Meng, Wen Jun 56
Merle, Philippe 242

Nechypurenko, Andrey 143
Neczwid, Andrij 205

Ober, Iulian 126
Ouimet, Martin 32

Petriu, Dorina C. 27
Pettit, Robert 277
Pini, Sonia 17

www.manaraa.com

332 Author Index

Pleuß, Andreas 101
Power, James F. 217
Provensi, Lucas Luiz 232

Rapin, Nicolas 179
Reiter, Thomas 263
Retschitzegger, Werner 263
Rilling, Juergen 56
Rumpe, Bernhard 318
Runde, Ragnhild Kobro 131
Ryndina, Ksenia 80

Sauer, Stefan 101
Schmidt, Douglas C. 143
Selic, Bran 126, 318
Śmia�lek, Micha�l 301
Soltenborn, Christian 329
Sourouille, Jean Louis 76
Staron, Miroslaw 76
Stein, Dominik 1

Süß, Jörn Guy 179
Szmur�lo, Robert 301

Vallino, James 291
van den Bergh, Jan 101
Vangheluwe, Hans 252
Vaz, Frederico Forzani 232

Warmer, Jos 152
Weil, Frank 205
White, Jules 143
Winter, Andreas 52
Witte, René 56
Wuchner, Egon 143
Wuttke, Jochen 42

Zhang, Yonggang 56
Ziegler, Jürgen 116
Zschaler, Steffen 27

	Title
	Preface
	Table of Contents
	9th International Workshop on Aspect-Oriented Modeling
	Introduction
	Overview of Accepted Position Papers
	Overview of Discussion Topics
	Concluding Remarks
	References

	Modeling Features in Aspect-Based Product Lines with Use Case Slices: An Exploratory Case Study
	Introduction
	Product Line Example
	Example Description
	AspectJ Implementation

	Use Case Slices
	Feature Oriented Programming (FOP)
	AHEAD in a Nutshell
	An Algebraic Model of EPL

	Integrating Use Case Slices and Features
	Related Work
	Conclusions and Future Work
	References

	Join Point Patterns: A High-Level Join Point Selection Mechanism
	Introduction
	Limits of the Join Point Models
	JPP Specification Language
	JPP Terminology and Description
	Aspects That Use Join Point Patterns

	Weaving in JPP
	Conclusions

	Critical Systems Development Using Modeling Languages – CSDUML 2006 Workshop Report
	Introduction

	Modeling an Electronic Throttle Controller Using the Timed Abstract State Machine Language and Toolset
	Introduction
	Related Work
	The Timed Abstract State Machine (TASM) Language
	Basic Definitions
	Time
	Resources
	Hierarchical Composition
	Parallel Composition

	The Timed Abstract State Machine Toolset
	The TASM Editor
	The TASM Simulator
	The TASM Analyzer

	Modeling the Electronic Throttle Controller
	Components
	Resources
	Complete Model and Simulation
	Scenario Modeling
	Results

	Conclusion and Future Work

	Model Checking of UML 2.0 Interactions
	Introduction
	UML 2.0 Interactions
	Interaction Automata
	Translation of UML 2.0 Interactions
	Basic Interactions, Loops, and Negation
	Interleaving, Sequencing, and Composition

	Model Checking UML 2.0 Interactions
	Related Work
	Conclusions and Future Work

	3rd International Workshop on Metamodels, Schemas, Grammars and Ontologies
	A Unified Ontology-Based Process Model for SoftwareMaintenance and Comprehension
	Introduction and Motivation
	Background
	Modeling a Software Maintenance Process
	An Ontological Software Maintenance Process Model
	Ontological Representation for Software Artifacts
	Process Management

	System Implementation and Evaluation
	System Overview
	Initial Evaluation

	Related Work
	Conclusions
	References

	Formalizing the Well-Formedness Rules of EJB3QL in UML + OCL
	Introduction
	Reverse Engineering the EJB3QL Spec: How and Why
	Consistency and Completeness Enforced by Language Metamodeling
	Selected Examples of Additional Corner Cases
	Integrating the Artifacts Generated from the Language Metamodel in a Software Project
	Related Work
	Conclusions and Future Work

	The 1st Workshop on Quality in Modeling
	Consistency of Business Process Models and Object Life Cycles
	Introduction
	Business Process Models and Object Life Cycles
	Generation of Object Life Cycles
	Consistency of Object Life Cycles
	Related Work
	Conclusion and Future Work

	A Qualitative Investigation of UML Modeling Conventions
	Introduction
	Evaluating Model Quality
	Measuring Model Quality

	Experimental Set-Up
	Experimental Design
	Experimental Subjects, Tasks and Objects
	Experimental Procedure
	Experimental Variables

	Data Analysis
	Threats to Validity
	Conclusion
	Modeling Conventions

	Model Driven Development of Advanced User Interfaces (MDDAUI) – MDDAUI’06 Workshop Report
	Workshop Topic
	Submissions, Participants, and Program
	Workshop Discussions
	Co-development of Models and Visualizations
	Runtime Interpretation of UI Models
	MDDAUI and Usability
	An Integrated Metamodel for UI Development

	Conclusion

	A Model-Driven Approach to the Engineering of Multiple User Interfaces
	Introduction
	Related Work
	Abstract Description of User Interfaces
	Adapting on the AUI Level
	Clustering Interaction Elements to Generate Presentation Units
	Inserting Control-Oriented Interaction Elements
	Selecting Content

	Generating Concrete and Implemented User Interfaces
	AUI Metamodel
	User Interface Structure
	Dialogue Model

	Applied Technologies
	Conclusion

	Model-Driven Dynamic Generation of Context-Adaptive Web User Interfaces
	Introduction
	Related Work
	Ontology-Based Web Application and Context Modeling
	The CATWALK Framework
	Generation of Adaptive, Context-Aware User Interfaces
	Representation
	Selection
	Parameterization
	Presentation

	Conclusion and Future Work

	Modelling and Analysis of Real Time and Embedded Systems – Using UML
	Introduction
	The Issues Discussed at the Workshop
	Profiles and Modelling Languages
	Techniques and Tools
	Applications
	Discussion and Conclusions

	References

	Time Exceptions in Sequence Diagrams
	Introduction
	Background
	The UML 2.1 Simple Time Model
	UML Profile for Schedulability, Performance and Time
	TimedSTAIRS
	UML Testing Profile --- Default Concept
	Proposed Notation for Exceptions in Sequence Diagrams

	Time Exceptions in the ATM Example
	The Normal Flow
	Applying Time Exceptions to the ATM
	Time Exceptions in EnterPin
	Time Exceptions in Withdrawal

	The Formal Semantic Domain of Sequence Diagrams
	The Formal Semantics of Time Exceptions
	Definitions
	Refinement
	Conclusions

	Applying Model Intelligence Frameworks for Deployment Problem in Real-Time and Embedded Systems
	Introduction
	Motivating Example
	Domain-Specific Model Intelligence
	Domain Constraints as the Basis for Automatic Suggestions
	Modeling Guidance On-the-Fly
	Model Completion Solvers

	Case Study: Solving EAST-EEA Deployment Problem
	Defining Constraints and Solvers

	Concluding Remarks

	OCL for (Meta-)Models in Multiple Application Domains
	Motivation and Goals
	Organization
	Topics and Approaches of Accepted Papers
	Discussion and Conclusion

	Introduction
	OCL-Based Validation of a Railway Domain Profile
	Short Introduction to the Railway Domain
	RCSD Profile
	Network Elements
	Instances of Network Elements
	Route Definitions

	Validation of Wellformedness Rules with USE
	Modeling the UML Metamodel and the RCSD Profile for USE
	Compliance of RCSD Model to Profile on Class Level
	Compliance of RCSD Model to Profile on Instance Level
	Results

	Conclusion

	OCL Support in an Industrial Environment
	Introduction
	The SAP Modeling Infrastructure (MOIN)
	Overview on the Architecture and Services of MOIN

	Related Work
	OCL Impact Analysis in the SAP Modeling Infrastructure
	Architecture
	Class Scope Analysis
	Instance Scope Analysis

	Preliminary Results
	UML-meta-model + MOF-constraints

	Conclusion

	Report on the 3rd MoDeVa Workshop – Model Design and Validation
	Towards Model-Driven Unit Testing
	Introduction
	Overview of the Approach
	Modeling with Visual Contracts
	Translation to JML
	Test Case Generation and Test Execution
	Test Case Generation
	Test Execution with Embedded Oracles

	Tool Support
	Conclusion

	Validation of Model Transformations – First Experiences Using a White Box Approach
	Introduction
	Model Transformations for Business Process Models
	Systematic Testing of Transformations
	Fault Model for Model Transformations
	Meta Model Coverage Testing
	Using Constraints for Construction of Test Cases
	Using Rule Pairs for Testing

	Conclusions

	Summary of the 2006 Model Size Metrics Workshop
	Overview
	Workshop Presentations
	Group Discussions
	Open Questions
	Plans and Summary

	Model Size Matters
	Introduction
	Why Do We Need Model Size Metrics?
	What Are the Challenges?
	Possible Approaches
	What Is Model Size?
	Proposed Approaches

	Conclusions and Future Directions

	On the Application of Software Metrics to UML Models
	Introduction
	General Observations
	Relationship with Code
	Some Future Directions
	Summary

	Summary of the Workshop Models@run.time at MoDELS 2006
	Introduction
	Workshop Format
	Session Summaries
	Discussions
	Reference

	Using Runtime Models to Unify and Structure the Handling of Meta-information in Reflective Middleware
	Introduction
	Foundations
	Reflection
	Metamodeling

	Combining Reflection and Metamodeling
	The Meta-ORB Metamodel
	Using the Model to Instantiate Platform Configurations
	Using the Model to Instantiate Reflective Meta-objects
	Creating New Model Elements Using Reflection

	Further Applications of the Approach
	Related Work
	Concluding Remarks

	Applying OMG D&C Specification and ECA Rules for Autonomous Distributed Component-Based Systems
	Introduction
	Principles of Autonomic Computing
	Key Research Challenges
	Our Dacar Prototype
	Case Study
	Related Works
	Conclusions and Future Work

	Summary of the Workshop on Multi-Paradigm Modeling: Concepts and Tools
	Introduction
	Multi-Paradigm Modeling
	Presented Papers
	Working Group Results
	Multiple Views
	Abstraction
	Model Evolution

	Program Committee

	Think Global, Act Local: Implementing Model Management with Domain-Specific Integration Languages
	Introduction
	Rationale for Our Approach
	Managing Models on a Global Level
	Model Manangement Scripts on the Global Composite Level
	Categorizing Transformations on the Global Level

	Integrating Models on the Local Level
	An Example DSIL on the Intermediate Level
	Integration Operators on the Local Composite Level
	Mapping Integration Operators onto the Local Level

	Related Work
	Conclusion and Future Work

	MoDELS 2006 Doctoral Symposium
	Model Driven Security Engineering for the Realization of Dynamic Security Requirements in Collaborative Systems
	Introduction
	MDE for the Realization of Dynamic Security Requirements
	Related Work
	Conclusions
	Contributions
	Future Work

	Educators’ Symposium at MoDELS 2006
	If You’re Not Modeling, You’re Just Programming: Modeling Throughout an Undergraduate Software Engineering Program
	Introduction
	The Difficulty of Modeling Software Systems
	Modeling Throughout the Curriculum
	Basic Object-Oriented Modeling
	Modeling in a Course on Design Patterns

	Formal Modeling
	“Theoretical” vs. “Practical” Modeling
	Finite State Process Modeling of Concurrent Systems
	Model-Driven Development

	Modeling in Other Design Areas
	Problems Still to Solve
	Using a Consistent Subset of UML
	Getting Students to Trust Their Models

	Success of Modeling Throughout the Curriculum
	Preference for a Modeling-First Approach
	Analysis of Formal Models

	Conclusions
	References

	Teaching Software Modeling in a Simulated Project Environment
	Introduction
	Course Format
	Teaching Results
	Conclusions

	Repository for Model Driven Development (ReMoDD)
	Introduction
	Goals, Objectives, Targeted Activities
	Project Description and Infrastructure
	Core ReMoDD Content-Related Concepts
	The ReMoDD Development Plan

	Evaluation
	Outreach
	Future Activities

	2nd UML 2 Semantics Symposium: Formal Semantics for UML
	Introduction
	Motivation
	The Semantics Architecture
	System Model
	Status
	Future Work

	A UML Simulator Based on a Generic Model Execution Engine
	Motivation and Background
	Analysis of DMM Based Semantics
	Conclusion

	Author Index

